Traveling University as a catalyst for resilient city development

16.MARCH.2023 | RANAHANSA DASANAYAKE | SUNYANI, GHANA

"We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too."

> JFK, RICE UNIVERSITY, SEP. 1962

ndeavor 11 De

TRAVELLING UNIVERSITY

AFRICAN CONTINENT

A Signature Course of IMAT

Challenges: to know... to

- Understanding *clients' needs*
- Understanding the system
- Get to know the stakeholder

ZECURA

IMAGE SOURCE: Google Imagery, (2019)

-balance Challenges: Y WOrk-WO 2

- Time, tasks, teams
- Contingency planning
- Concentrate on results not on being busy

ZECURA

IMAGE SOURCE: Google Imagery, (2019)

partnershij -U Challenges: nportance

- Get together as a team
- Faith and trust
- Maintain the team spirit

ZECURA

- Navigation is the key
- No map, no chance
- What is the red line?

ZECURA

BS

Challenge

look U Challenges: leeper 0 σ take

- Curiosity
- Practical
- Hands-on

ZECURA

IMAGE SOURCE: Google Imagery, (2019)

itv **Niversi** avellir

iversity: avellin

ZECURA Professor description

We've been around the world

limate \mathbf{O} nsitio Ut J J **()**

Global carbon-dioxide emissions, gigatons (GtCO₂) per year

IMAGE SOURCE:

https://www.mckinsey.com/capabilities/sustainability/ourinsights/a-blueprint-for-scaling-voluntary-carbon-markets-tomeet-the-climate-challenge, (2022)

In Scenario 1.5°C strict emission reductions and *carbon removals* are required! Need for **100%** renewable (electricity, heat, mobility) Massive *investments* in RE and Circular Economy and new business concepts necessary

"A just, free, prosperous and selfreliant nation that would play a leading and influential role in regional and global affairs. [...] transformation meaning improvement in the living standards of Ghanaians in a structured, predictable and measurable manner over the 40 years of the plan in the economic, social, environmental and institutional spheres"

IMAGE SOURCE: https://ndpc.gov.gh/media/Longterm_National_Development_Plan_2018-2057.pdf; Accessed 12.03.2023

1992 Constitution, Article 36 (2)(e)

National Development Planning Commission (NDPC)

eptember 2017

a.) Build an industrialized, inclusive and *resilient economy*

b.) Create an equitable, healthy and prosperous society

c.) Build safe and well-planned communities, while *protecting the natural environment*

d.) Build effective, efficient and dynamic institutions for national development

e.) Strengthen Ghana's role in international affairs

—Specific objectives, LTNDP

IMAGE SOURCE: https://ndpc.gov.gh/media/Longterm_National_Development_Plan_2018-2057.pdf; Accessed 12.03.2023

#1 Greenest university campus

ECB is a living aboratory CIO

renewable heat supply based on waste wood, biogas (co-generation) and solar thermal

is a living CB is a l aboratory

renewable electricity supply based on cogeneration (heat and electricity) & photovoltaic

CB is a living boratory C O

renewable cooling system based on geothermal, biomass and solar adsorption chilling

ECB is a living aboratory

State-of-the art energy and resource efficiency technologies and strategies in place

Building mission ш Zero

owered by the sun

Green hydrogen

institute for chang Y

International Project Management

Study and Qualification

Fundraising

Biomass and Cultural Landscape Development

Energy Effciency & Renewable Energies

E-mobility

Material Flow Management and Zero Emission

PR – Communication and Participation

Joint education, research & technology transfer for Circular Economy

"Education is the most powerful weapon which you can use to change the world."

— Nelson Mandela

"If you want to change the world, start off by making your bed."

- William H. McRaven

Grand Finale

DIAGNOSTIC SUMMARY: ZERO EMISSION CAMPUS MASTER PLAN

— Vision —

"Our vision is to create innovative resilience strategies for fast growing cities to successfully overcome current and future sustainability challenges".

ZECURA Zero-Emission Concepts for Urban Resilience in selected African cities

- Mission -

"Our mission is to make Sunyani a resilient city; a city that withstands socio-political and environmental stressors and demographic change whilst accelerating its economic growth.

UENR will be the sustainability, technology and transport hub of Ghana through a secure, independent and sustainable economy, whilst sharing its knowledge with surrounding communities".

Research team

Visiting team

Critical parameters

Ifas the sevents

Tariff	Unit	Value	Source
Electricity	GHS/kWh	1.73	PURC (1 st Quarter, 2023)
Electricity service charge	GHS/month	12.43	PURC (1 st Quarter, 2023)
Exchange rate	GHS/USD	12.28	
Water	GHS/m ³	12.15	PURC (1 st Quarter, 2023)
Service charge	GHS/month	20.00	PURC (1 st Quarter, 2023)
Petrol	GHS/L	13.80	GOIL (2023)
LPG	GHS/L	9.44	UENR
Diesel	GHS/L	13.80	GOIL (2023)
Emission factor	Unit	Value	Source
Petrol	kg CO _{2e} /L	2.3	IPCC
Diesel	kg CO _{2e} /L	2.68	IPCC
LPG	kg CO _{2e} /L	1.61	IPCC
Grid	kg CO _{2e} /kWh	0.495	2F2

SPONSORED BY THE Federal Ministry of Education and Research

Umwelt-Campus H OCH Birkenfeld T R IE R

Contents

- . Solid waste
- II. Freshwater & wastewater
- III. Energy
- IV. Renewable energy
- V. Sustainability impacts

Solid waste

Status quo: solid waste (UENR, 2023)

Waste collection point, UENR

Umwelt-Campus Birkenfeld T R I E R Federal Ministry of Education and Research

Status quo: solid waste (Sunyani, 2023)

45

MSW dump site, Sunyani

Ideas & strategies: resource mgt. (UENR, 202X)

- Student-led UENR solid waste management team for *waste reduction* & *segregation*
- 6 bins (e-waste, paper, residual, metals, plastic, organic)
- Education, repair cafe, furniture exchange, take back system, ecobots (PET-bottle), upcycling
- Monitoring of waste reduction & segregation
- Coordination with stakeholders (plastic recycling plant, truck transportation service)
- Dissemination of knowledge and success of the waste mgt. programme

Biogas from OW (UENR, 202X)

Parameter	Unit	Value
Estimated bio-methane production	m³/a	67,949
Total heat generation potential	kWh/a	672,693
CHP unit's electrical efficiency	η _{elec.}	35%
CHP unit's thermal efficiency	N _{thermal}	50%
Electricity output	kWh _{elec.} /a	235,443
Heat output	kWh _{thermal} /a	336,346
Power: electrical	kW _{elec.}	109
Power: thermal	kW _{thermal}	155

NOTE: Biogas digester size (8% concentration of total solids with 40 days hydraulic retention time)

Federal Ministry of Education and Research

Umwelt-Campus SC HULE Birkenfeld TRIER 48

Biogas from OW (UENR, 202X)

Levelized cost of electricity (CHP biogas) 0.17 USD/kWh (higher than grid) 0.12 USD/kWh_{thermal} (same as LPG) Levelized cost of heat (CHP biogas) LPG equivalent fuel generation (from biogas) 46,831 L/a UENR LPG use (UENR, 2021) 3,814 L/a Surplus fuel from biogas 43,017 L/a

Srilak umaga, Janathakshan GTE, (2019)

The effluent of the biodigester can be used as liquid fertilizer for agriculture.

Urban resource centre (Sunyani, 202X)

SOURCE: Google Images (2022), Waste resource center & biogas plants in Germany, https://www.euractiv.com/section/energy-environment/opinion/biogas-in-germany-maintaining-momentum/

Proposed resource recovery centre, Sunyani

Freshwater & wastewater

Status quo: freshwater (UENR, 2023) Concrete Residences tanks Laboratories Ground Clinic water 252,000 226,800 **Administration** m³/a m³/a block washrooms Water from private Lecture hall companies washrooms School farm Poly-tanks irrigation system System boundary: UENR & Hostels

Ifas Entre agreements

Umwelt-Campus HOCH Birkenfeld TRIER

of Education

and Research

52

ZECURA

Waste

water

 $= 10.2 tCO_{2e}/a$

*Water pump's energy

consumption = 20,630 kWh/a; GHG emissions

GHG*

Status quo: wastewater (UENR, 2023)

Status quo: wastewater (Sunyani, 2023)

Ideas & strategies: water supply, water use efficiency and WWT (UENR, 202X)

- . Rainwater harvesting
- II. Water-efficient cisterns
- III. Water-efficient faucets
- IV. Waterless urinals & nutrient recovery
- V. WWT–NBS

ZECURA

Rainwater harvesting

Parameter	Unit	Amount
Catchment/roof area	m ²	5,960
Selected roof area (60%)	m ²	3,576
Annual rainfall	mm	942
Annual available water	m³/a	2,863

SOURCE: https://weatherspark.com/y/38153/Average-Weather-in-Sunyani-Ghana-Year-Round

IfaS

Rainwater harvesting

Reservoir for 480 m³ of rainwater NOTE: Approx. 40 days of rainfall volume

Parameter	Unit	Amount
Total construction cost	USD	21,475
Operating cost	USD/a	215
Monetary saving	USD/a	403
Levelized cost of service unit (LCoS)	USD/m ³	0.93
Internal rate of return	%	-11

SOURCE: https://www.energy.gov/eere/femp/water-efficient-technology-opportunity-rainwater-harvesting-systems (2022), SOURCE: https://jrhwatermanagement.co.uk

IfaS

Water-efficient cisterns

Parameter	Unit	Old	New
Water volume per use	L	8.5	4
Units	Х	396	396
Usage	flushes/day	5	5
Annual water demand	m³/a	6,143	2,891
Saving potential	%		53
Estimated CAPEX	USD		9,920
Monetary savings	USD/a		3,218
Payback	а		3.3

SOURCE: https://jlplumbing.com/product/ce-watermark-toilet-water-tank-pneumatic-concealed-cistern/ (2022), https://toilet-guru.com/pressure.html (2022).

Water-efficient faucets

Parameter	Unit	Old	New
Water output	L/min	6	1.9
Units	Х	200	200
Usage per day	min	10	10
Water demand annual	m³/a	4,380	1,387
Saving potential	%		68
Water savings annual	m³/a		2,993
Estimated CAPEX	USD		6,200
Monetary savings	USD/a		2,961
Payback	а		2.1

SOURCE: https://www.enware.com.au/products/general-commercial-tapware/enware-delabie-tempostop-time-flow-basin-pillar-tap-push-button/ (2022).

Waterless urinals

Parameter	Unit	Old	New
Water output	L/flush	2	0
Units	Х	100	100
Usage per day	times	30	30
Water demand annual	m³/a	2,190	0
Saving potential	%		100
Water savings annual	m³/a		2,190
Odor trap cost	USD/a		20
Monetary savings	USD/a		2,147
Estimated CAPEX	USD		17,000
Payback	а		7.1

SOURCE: https://waterless.solutions/how-waterless-urinals-work

Nutrient recovery from urine as fertilizer

Estimated total urine collection 2,160 m³/a NOTE: from male washrooms at 50% collection ratio per day

Type of nutrient	Extractable amount [w/w]	Total extractable mass [t/a]
N - Nitrogen	13%	280.8
P - Phosphorus	1.5%	32.4

Extraction of N and P from 1 m³ of pure urine can make a *profit of 2.4 USD*

Total profit from recoverable nutrients in urine 5,184 USD/a

SOURCE: Surendra K. Pradhan et al, 2017, DOI: 10.1021/acs.est.6b05402, https://theconversation.com/we-found-a-way-to-turn-urine-into-solid-fertiliser-it-could-make-farming-more-sustainable-148877

WWT-NBS: constructed wetland

Parameters	Unit	UENR model
Wastewater volume treated	m ³ /d	621.37
Wetland area	m ²	4,438
Estimated CAPEX	USD	266,301
Operating cost	USD/a	5,326
Treated water discharged	m ³ /a	214,110

SOURCE: https://www.ysi.com, https://www.environmental-expert.com

Energy

Status quo: energy (UENR, 2023)

Ideas & strategies: energy efficiency (UENR, 2023)

- Air-conditioning
- II. Illumination

IRED BY THE

Federal Ministry of Education and Research

SOURCE: https://www.orionairsales.co.uk/daikinair-conditioning-emura-ftxj50aw-crystal-white-wallmounted-5kw18000btu-r32-a-240v50hz-6799-p.asp

Energy-efficient illumination

Doromotor	Lloit	FTL	LED	LED
Falametei	Unit	T12 6ft	Low-tech	High-tech
Approx. cost per bulb	USD	10	60	100
Average lifespan	h	5,000	20,000	50,000
Power output (without ballast)	W	75	30	30
No. of bulbs needed (50k hrs.)	Х	10	3	1
Operating hours	h/a	1,200	1,200	1,200
Total purchase price (for 50k hrs.)	USD	100	180	100
Total cost of electricity used (50k hrs. at 0.141USD/kWh)	USD	529	212	212
Total cost over 50k hours	USD	629	392	312
GHG emissions	tCO _{2e} /a	0.45	0.02	0.02
Cost per operational year	USD/a	15	9	7

SOURCE: Lanz Manufakture GmbH, (2023)

SPONSORED BY TH

and Research

67

Ideas & strategies: energy efficiency (Sunyani, 202X)

I. Energy-efficient buildings

ISORED BY THE

Federal Ministry of Education and Research

Conventional dwellings vs green buildings

70% of electricity consumed in public and commercial buildings in Ghana is used to for air-conditioning.

f Education

Annual electricity consumption scenarios of A/C in Ghana

Average total electricity consumption in four roomed house or a small office building is around 6,000 kWh/a

SOURCES: Richard Opoku et al. 2019, https://doi.org/10.1016/j.jclepro.2019.05.067, https://vicalexbrickghana.com/

Conventional dwellings vs green buildings

Energy efficiency options for four-roomed house or a small office building

Based on the most conservative assessment, 1,000 houses can save nearly **420,000 USD/a**

SOURCES: https://www.mrmisty.co.uk/double-glazing-gasket-repairs , https://vicalexbrickghana.com/, https://www.inventorairconditioner.com/ , Richard Opoku et al. 2019, https://doi.org/10.1016/j.jclepro.2019.05.067

ZECURA

Renewable energy

Status quo: renewable energy (UENR, 2023)

ederal Ministr

of Education

and Research

Solar irrigation system, UENR

Solar street lights, UENR

Engineering laboratory, UENR

Ifas with the representer of the formattion of t

72

Ideas & strategies: renewable energy (UENR, 202X)

- Photovoltaic-based energy generation
- II. eMobility

ORED BY THE

Federal Ministry of Education and Research

Photovoltaic potential

Parameter	Unit	Value	
Available rooftop area	m ²	5,900	
Useable rooftop area	m ²	4,000	
PV power generation	kWh/a	1,445,973	
Direct own consumption	kWh/a	630,478)
PV power surplus (export)	kWh/a	815,495)

Specific annual yield 1,730 kWh/kWp Simulated installed capacity 836 kWp

SOURCE: Google images, (2023)

Ifas

Photovoltaic potential

Estimated CAPEX 668,528 USD NOTE: unitary turnkey price 800 USD/kWp

f Education

LCoE

PV

0.141 0.0476 USD/kWh USD/kWh PV energy surplus ~815,495 kWh/a

Grid

electricity

Diesel bus vs electric bus

ederal Ministr

of Education

and Research

Umwelt-Campus

Birkenfeld

SC Н

TRIER

IfaS

OL OF SCIENCES

IfaS

Umwelt-Campus

Birkenfeld

Diesel pickup vs electric pickup

ederal Ministr

of Education

and Research

Electromobility potential

NOTE: Charging/discharging and cable losses 20%, losses in stationary mode 10%

Average energy consumption of electric vehicles: 0.4 – 0.6 kWh/km (Incl. all losses—vehicle battery + performance)

1,027,524 km/a equivalent

171,254 liters of diesel equivalent (average 6 km/L of diesel)

Cost savings: Emission savings : 192,400 USD/a 461 tCO_{2e}/a

Electromobility potential

Estimated number of electric vehicles that the excess energy can service

Tariffs per kWh 0,09 **Unit Sales Price** 0,046 Feed In Tariff Grid Tariff 0,141 0,0476 LCOE USD/kWh Federal Ministr Ifas institut for angen Umwelt-Campus Birkenfeld T R IE R of Education and Research

Umwelt-Campus SC H U L Birkenfeld T R I E R f Education

Revenue generated from sale of electricity by the ESC

Revenue sources: servicing of EVs, EV sales, sale of spare parts

Electro mobility (a regional example; Uganda)

E-bike Charging Station

What to achieve ...

Capacity building: awareness of the systems Repair & maintenance support: providing jobs to noneducated workers Establishing a circular economy: within the university energy circuit

SOURCE: https://www.zem.bo/

SPONSORED BY TH

ederal Ministry of Education ZECURA

eMobility (a regional example; Tanzania)

Converting an ICE to an electric system.

Removing the existing internal combustion engine and replacing it with a complete electrical system i.e. an electric motors, battery system, onboard charger, information display.

Extending the lifespan of the vehicle by retrofitting; reduce the life cycle emissions.

of Education and Research

RE potential: future prospect

Available potentials

Based on the current evaluation, surplus of **314,350** kWh_{thermal}/a heat and, **815,400** kWh_{elec}/a of electricity are available,

What can we do other than eMobility?

Vapor absorption chillers, heat-to-cold, biomass, biogas, solar thermal

Organic Rankine Cycle (ORC) generators

Green hydrogen from PV and bio-methane

Cooling from heat: absorption chiller

Airconditioning, chilled water etc.

Surplus heat or Waste heat Cold output

Reduce or eliminate the compression ratio of AC units and in return it reduces the *electricity consumption*

Can support low hot water intake (+60 °C) Absorption chillers generally has low COPs If the feed temperature is low, the COP is low (0.5 – 1.5)

SOURCES: http://worldenergy.co.kr/en/portfolio-item/2aa-2/, https://coolingbestpractices.com, https://www.lg.com/global/business/download/airsolution/Absorption_Chillers[20 200716 141453721].pdf

Parameter	Unit	Amount
Total heat surplus	kWh _{thermal} /a	314,352
Estimated cooling demand (UENR)	kWh _{cold} /a	665,160
Cold output of the VAC	kWh _{cold} /a	238,907
VAC coverage	%	36
LCoE cold	USD/kWhcold	0.27

Current cold energy price for UENR = 0.061 USD/kWh_{cold}

Organic Rankine Cycle (Biomass: maize)

of Education

and Research

Combustion

SOURCE: Google images, (2023)

Ifas

- Vaporization of working fluid
- Mechanical to electrical energy
- Heat exchange for crop processing

Renewable energy & green H₂ potential

Surplus from biogas and PV

Available methods:

Umwelt-Campus Birkenfeld T R I E R

- 1. Electrolysis
- 2. Steam methane reforming (SMR)
- 3. Partial oxidation (POX)
- 4. Autothermal reforming (ATR)

Future prospects

Uses of green hydrogen

SOURCE: (Toyota-Hydrogen-Fuel-Cell-Powered-Bus-Arrives-in-Ireland.Jpg (963×519), n.d.)

Estimated total H_2 production is **11.8 t/a** from the surpluses of PV

Proposed energy supply model UENR

ZECURA

Sustainability impacts

Financial impacts potential (UENR, 202X)

ZECURA

Financial impacts potential (UENR, 202X) contd.

ZECURA

ZECURA Decine in sector for that Resider in sector African data

Financial impacts potential (UENR, 202X) contd.

of Education and Research UENR ZERO EMISSION CONCEP

400

IfaS

Environmental impacts (UENR, status quo)

GHG emissions per sector [%] (2021)

GHG emissions per sector [tCO_{2e}/a] (2021)

f Education

358 350 Others 32% 300 250 Electricity 68% 200 No data available 150 129 100 525 tCO_{2e}/a Total GHG: 50 32 0.038 tCO_{2e}/ca·a GHG emissions per capita (UENR): 6 0 0 0 0.6 tCO_{2e}/ca·a GHG emissions per capita (Ghana): Grid Energy Vehicles LPG Solid waste Wastewater Refrigerants

Environmental impacts potential (UENR, 202X)

GHG Emissions per sector [tCO_{2e}/a] Potential

Total GHG: $-619 \text{ tCO}_{2e}/a$ GHG emissions per capita (UENR): $-0.045 \text{ tCO}_{2e}/ca \cdot a$ GHG emissions per capita (Ghana): $0.6 \text{ tCO}_{2e}/ca \cdot a$

Social impacts potential (UENR, 202X)

The complete picture...

PONSORED BY THE

Federal Ministry of Education and Research

Umwelt-Campus Birkenfeld T R I E R

98

Thank you!

ODED BY THE

Federal Ministry of Education and Research