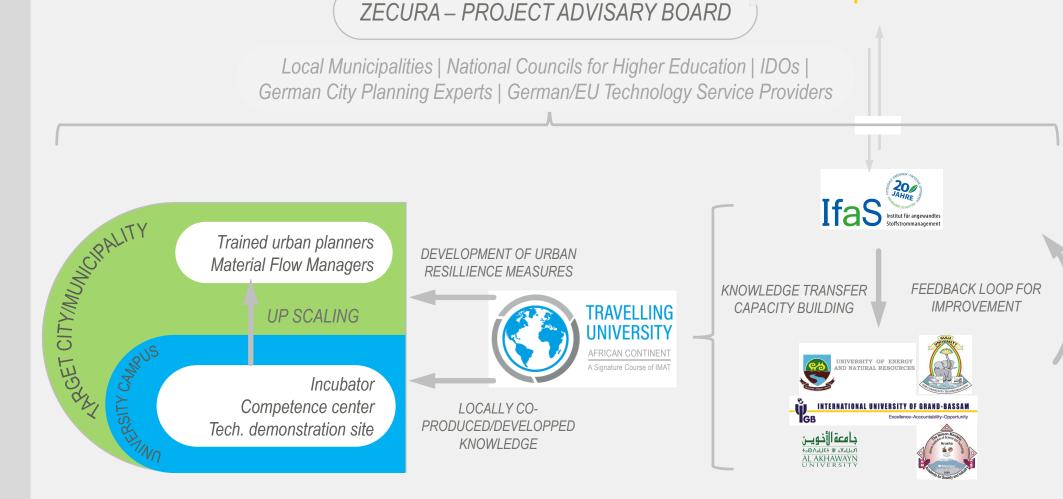


29.09.2022 | Arusha

Federal Ministry of Education and Research

CURA F/Z MB

Zero Emission Concepts for Urban Resilience in selected African cities



An initiative for *resilient cities*...

"[...] collaborative development and transfer of knowledge to support the transition towards resilient water, energy, food and waste management services in selected African cities enabling communities to achieve a sustainable, low-carbon future while improving the service quality"

ltem	Description
Funding Body	BMBF/Bundesministerium für Bildung und Forschung
Recipient Institution	Institute for Applied Material flow Management/Trier University of Applied Sciences, DE
Partner Countries & Institutions	AUI, MA IUGB, CI UENR, GH NM-AIST, TZ GU, UG
Project Duration	Three years (2021–2023)/144 man-months
No. of Work Packages	Three
No. of TUs	Five (SEP—2021 [AUI]; FEB [IUGB], APR [UENR], SEP [NM-AIST], OCT [GU]—2022)

S Û **Q** king

ZECURA

Federal Ministry of Education and Research

https://zecura.info

Many sites to

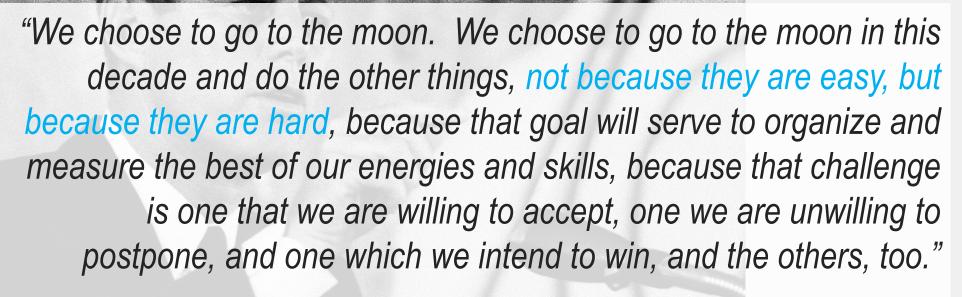
Keep life interesting al the time!

Impressions

SANA Z ASANT

29.09.2022 | Arusha

Federal Ministry of Education and Research


Traveling University as a catalyst for resilient city development

29.SEPTEMBER.2022 | RANAHANSA DASANAYAKE | ARUSHA, TANZANIA

HOCH SCHULE

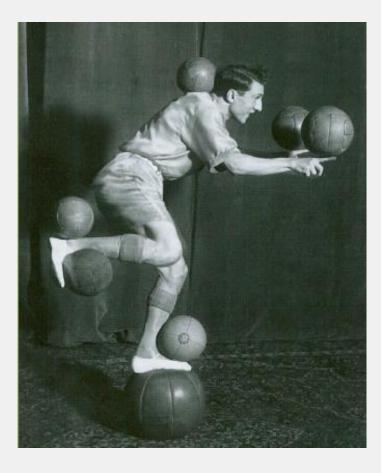
JFK, RICE UNIVERSITY, SEP. 1962

ndeavor 111 he

TRAVELLING UNIVERSITY

AFRICAN CONTINENT

A Signature Course of IMAT


Challenges: to know... et

- Understanding clients' needs
- Understanding the system
- Get to know the stakeholder

work-work-balance Challenges: 2

- Time, tasks, teams
- Contingency planning
- Concentrate on results not on being busy

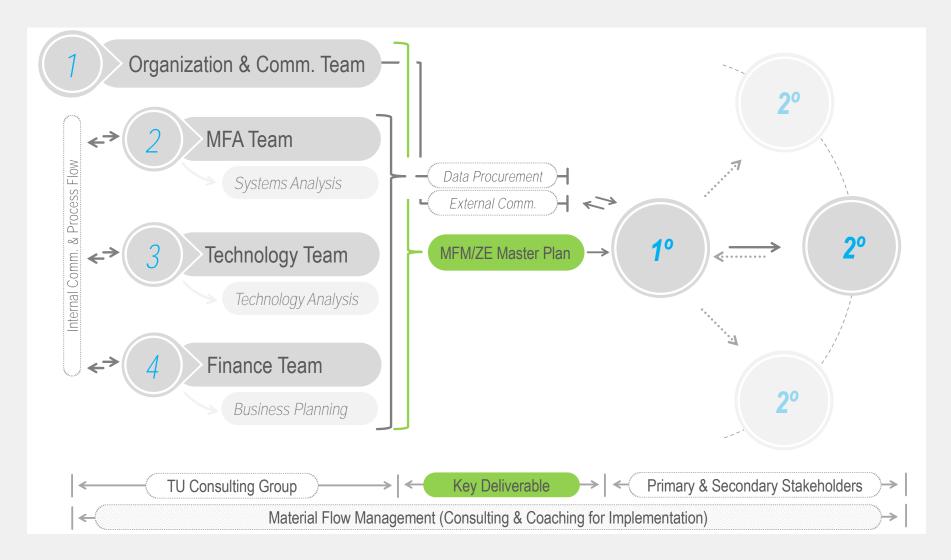
partnershil -U Challenges: nportance

- Get together as a team
- Faith and trust
- Maintain the team spirit

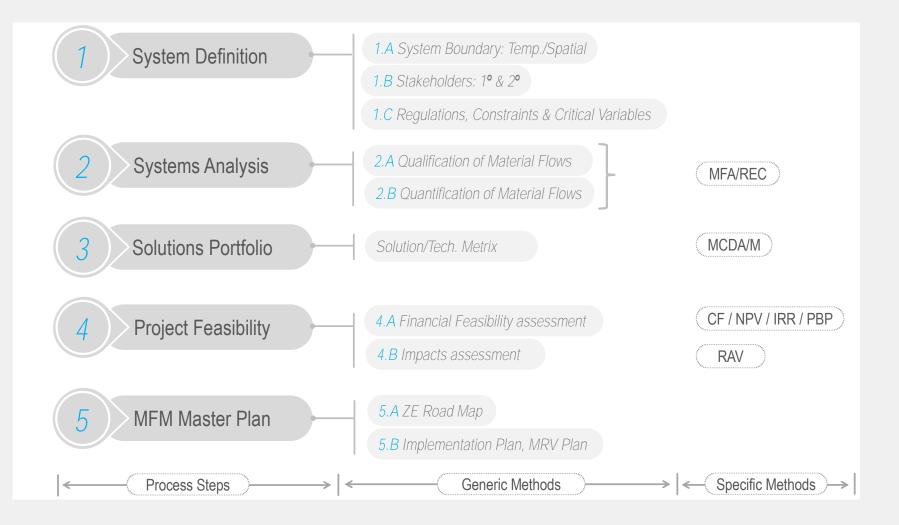
ring Challenges σ Φ 0 Vour et

- Navigation is the key
- No map, no chance
- What is the red line?

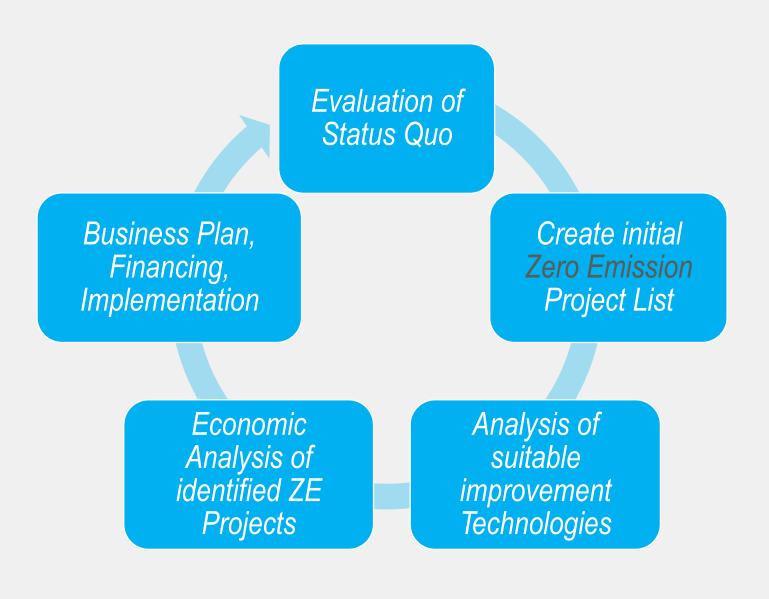
look U Challenges: deeper σ take



- Curiosity
- Practical
- Hands-on


IMAGE SOURCE: Google Imagery, (2019)

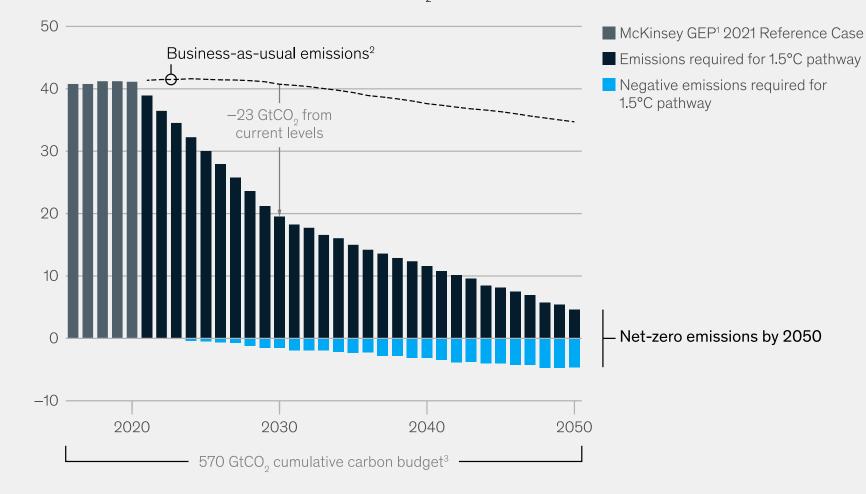
1 IVersi ravellin



<u>|</u> IVERSI avelli

We've been around the world

An initiative for *resilient cities*...


"[...] collaborative development and transfer of knowledge to support the transition towards resilient water, energy, food and waste management services in selected African cities enabling communities to achieve a sustainable, low-carbon future while improving the service quality"

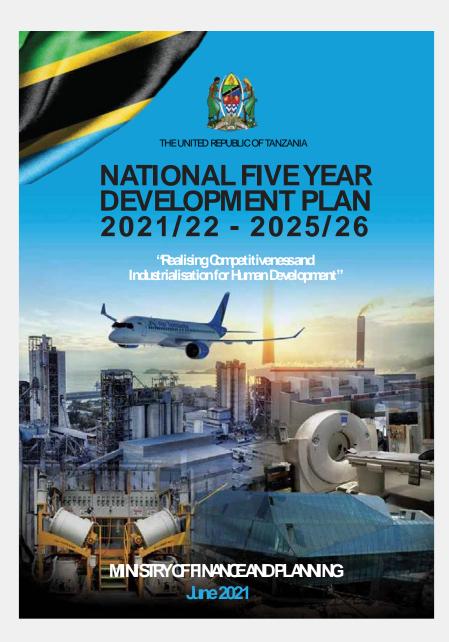
climate ransitio 5 **(**)

Global carbon-dioxide emissions, gigatons (GtCO₂) per year

IMAGE SOURCE: https://www.mckinsey.com/capabilities/sustainability/ourinsights/a-blueprint-for-scaling-voluntary-carbon-markets-tomeet-the-climate-challenge, (2022)

In Scenario 1.5°C strict emission reductions and *carbon removals* are required! Need for 100% renewable (electricity, heat, mobility) Massive investments in RE and Circular Economy and new business concepts necessary Africa is a prime spot to leapfrog green development Carbon certificate could leverage investments

an eatic value


IMAGE SOURCE: Gold Standard

"The three principal objectives of the Vision 2025:

a.) achieving quality & good life for all; b.) good governance & the rule of law; c.) building a strong & resilient economy that can effectively withstand global competition"

"To strengthen *capacity building* in the areas of science, technology and *innovation* to enhance competitiveness and productivity in all sectors especially the productive, manufacturing and services sectors to enable Tanzanians to *benefit from the* opportunities available within the country"

2nd specific objective of the FYDP III

#1 Greenest university campus

is a living SIO CB is a bounded of the second second

renewable heat supply based on waste wood, biogas (co-generation) and solar thermal

ECB is a living aboratory

100%

renewable electricity supply based on cogeneration (heat and electricity) & photovoltaic

ECB is a living aboratory

renewable cooling system based on geothermal, biomass and solar adsorption chilling

ECB is a living aboratory CIO

EE/RE

State-of-the art energy and resource efficiency technologies and strategies in place

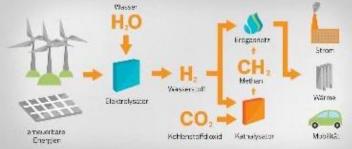
Train Station to Frankfurt Airport

- 100% Private company investments (30 million EUR CAPEX) in Public-Private-Partnership [PPP]
- 100% Regional Added Value [RAV] (35 new jobs, GHG abatement, long-term energy security)

Industria

Building mission ш Zero




owered by the sun

Green hydrogen

An institute for change...

International Project Management

Study and Qualification

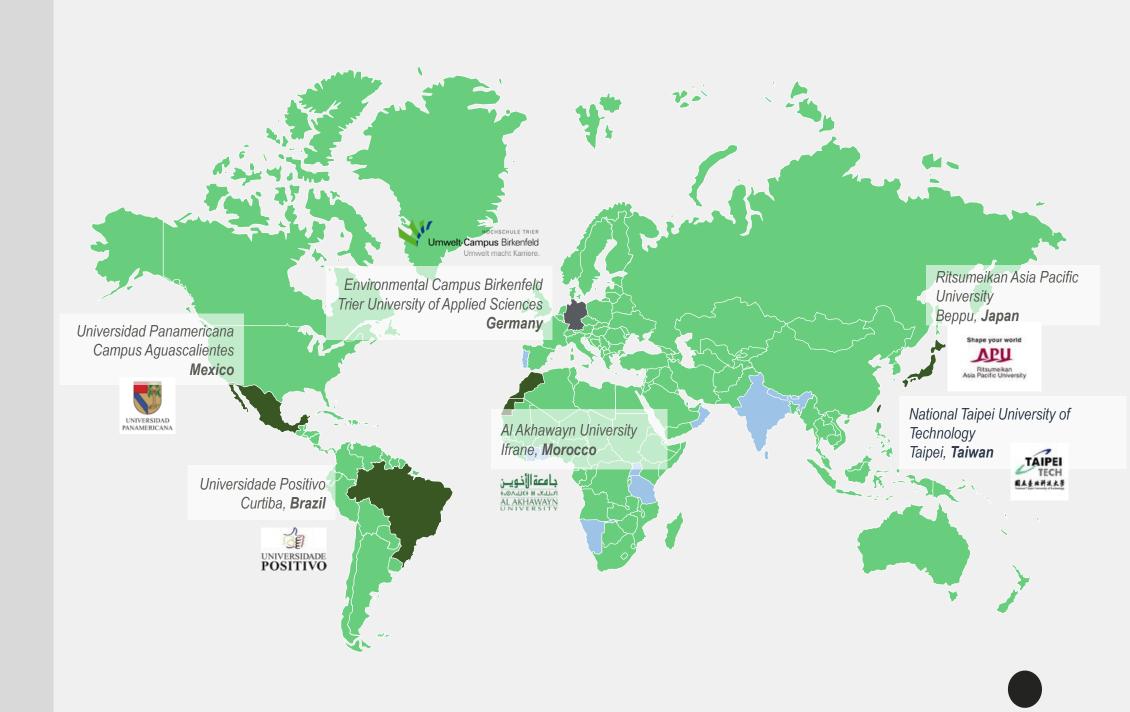
Fundraising

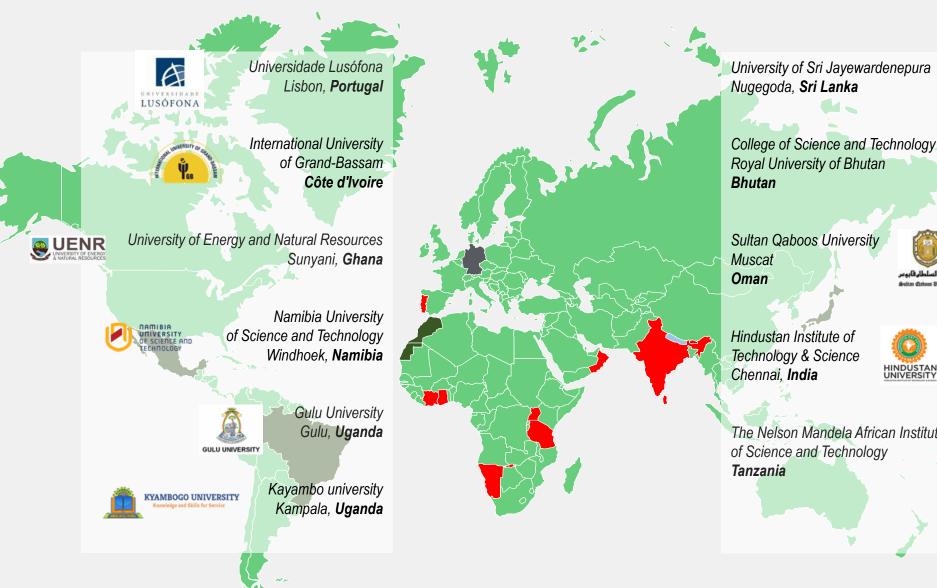
Biomass and Cultural Landscape Development

Energy Effciency & Renewable Energies

E-mobility

Material Flow Management and Zero Emission


PR – Communication and Participation



Joint education, research & technology transfer for Circular Economy

alter Oxford Hodgerstit

HINDUSTAN

The Nelson Mandela African Institute

"EDUCATION IS THE MOST POWERFUL WEAPON WHICH YOU CAN USE TO CHANGE THE WORLD." NELSON MANDELA

29.09.2022 | Arusha

Federal Ministry of Education and Research

Outline

1 Introduction: *team, vision, mission*

5 Economic Analysis

5 3

2 Status Quo

6 Impacts

3 Ideas & Strategies

7 Conclusion

4 Evaluation of Technologies

Our Vision

Our vision is to create innovative resilience strategies for fast growing cities to successfully overcome current and future sustainability challenges.

Our Mission

Our mission is to make Arusha a **resilient city**; a city that withstands socio political and environmental stressors and demographic change whilst accelerating its economic growth.

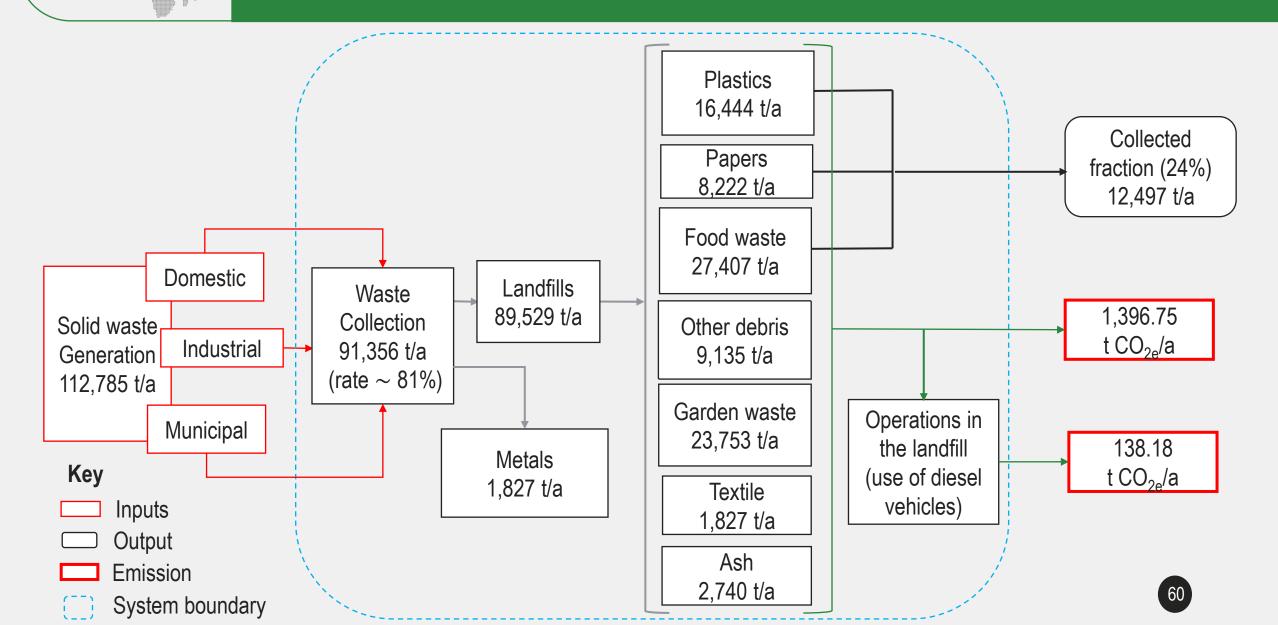
NM-AIST will be the sustainability, technology and transport hub of East Africa through a secure, independent and sustainable economy, whilst sharing its knowledge with surrounding communities.

> T H E Z E C U R A T E A M

Research Team

Visiting Team

Host Team


5 8

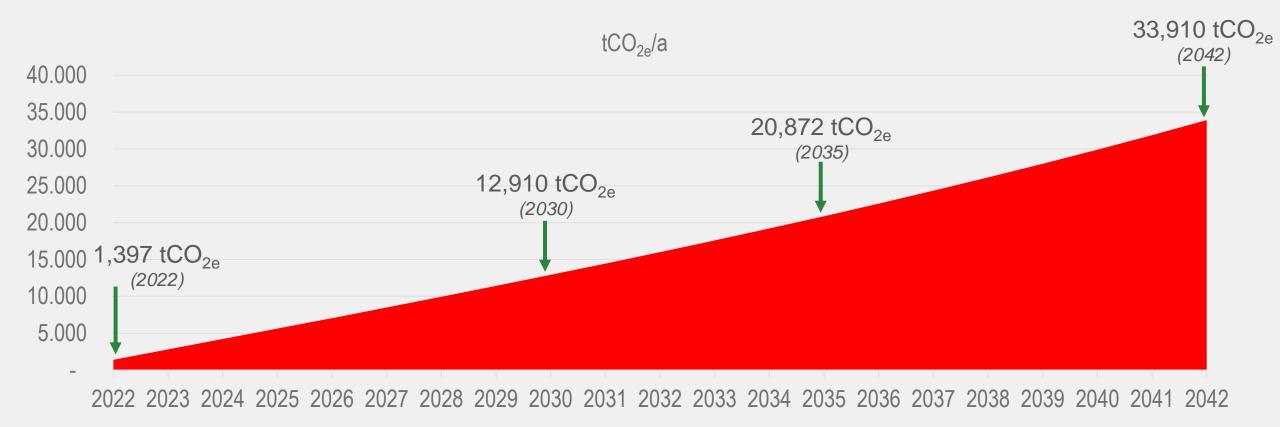
Municipal Solid Waste

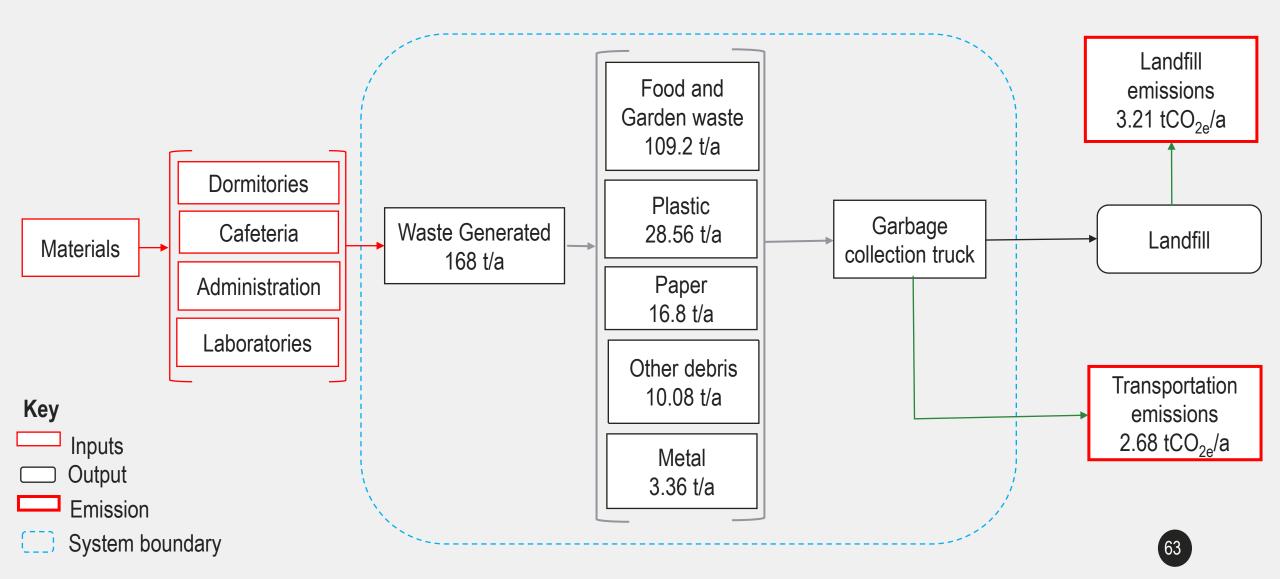
Status quo: MSW Arusha

ZECURA Zero-Emission Concepts for Urban Resilience in selected African cities

Status quo: MSW composition

Waste Composition in Muriet Landfill, Arusha


Composition	Fraction	Amount (t/a)
Food waste	30%	27,407
Garden waste	26%	23,753
Plastic	18%	16,444
Metal	2%	1,827
Other debris	10%	9,135
Paper	9%	8,222
Textiles	2%	1,827
Ash	3%	2,740


CO_{2e} emissions in Muriet landfill in the next 20 years (Baseline: 2022)

SOURCE: Calculated by using Methodological tool: Emissions from solid waste disposal sites, Tool 4, V8, UNFCCC,

Status quo: Solid waste (NM-AIST)

Status quo: Solid waste (NM-AIST)

Waste composition in NM-AIST

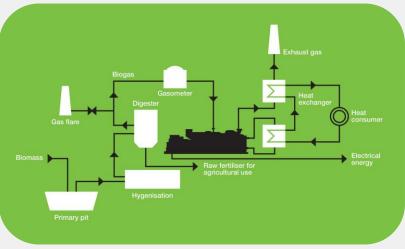
Composition	Fraction	Amount (t/a)
Food and garden waste	65%	109.2
Plastic	17%	28.56
Paper	10%	16.8
Other debris	6%	10.08
Metal	2%	3.36

Total CO_2 equivalent emissions = 3.21 t CO_{2e} /a

Unsorted waste (bin)

Mixed/unsorted waste (at the collection point)

Garden waste generation


Waste collection point

Ideas & Strategies: Solid waste to energy/biogas

Appropriate waste collection and sorting

Energy generation

Biogas for cooking (reduce deforestation)

SOURCE: https://www.nytimes.com/wirecutter/blog/dont-need-ditch-your-gas-stove-yet/ (2022); http://biblioteca.olade.org/opac-tmpl/Documentos/cg00530.pdf (2022); http://biblioteca.olade.org/opac-tmpl/Documentos/cg00530.pdf (2022); Google Images (n.d.), <u>www.irena.org</u>, https://www.clarke-energy.com/applications/biogas/

Ideas & Strategies: Waste management

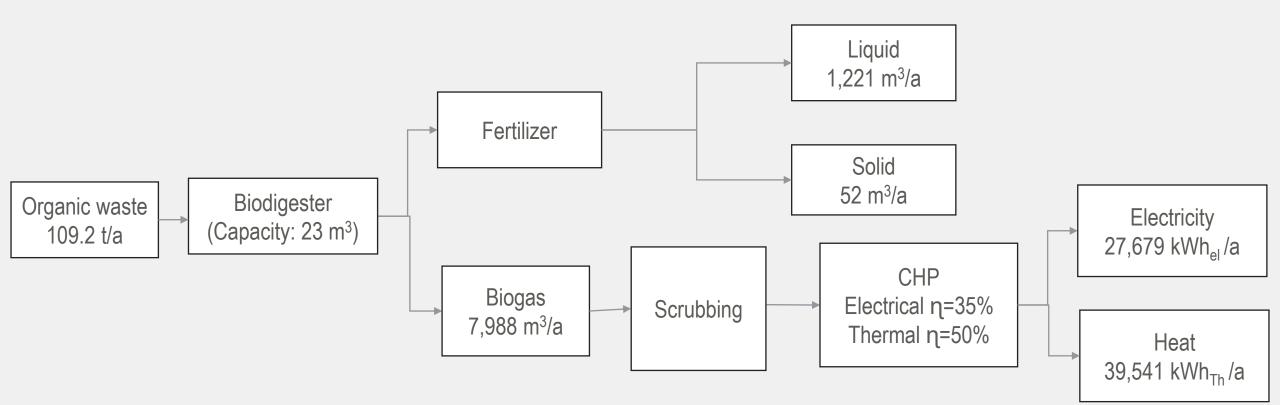
ZECURA

Ideas & Strategies: Waste resource center

) Source segregation program within the university

The center will be managed by students (the aim: learn about the types of waste and administration of a center)

Main WRC
Collection points


3 Sell secondary resources (revenue for NM-AIST)

ITEM	UNIT	PAPER	METALS	PLASTICS	CARDBOARD
Price	TZS/kg	200	800	500	100
Generation	kg/year	15,120	3,360	28,560	1,680
Income	TZS/a	3,024,000	2,688,000	14,280,000	168,000
Total income	TZS/a			20,160,000	

SOURCE: https://www.tandfonline.com/doi/pdf/10.1080/27658511.2021.1935532

68

Business opportunity: small-scale biogas digestors (replacing LPG)

University CECC as a "business unit" to transfer technology knowledge and competence to schools, community etc.

ITEM	UNIT	AMOUNT	
Estimated bio-methane production	m³/a	7,988	
Total heat generation potential	kWh/a	79,082	
CHP unit's electrical efficiency	N _{elec.}	35%	LPG equivalent
CHP unit's thermal efficiency	N thermal	50%	2,966 kg/a
Electricity output	kWh _{elec.} /a	27,679	
Heat output	kWh _{thermal} /a	39,541	GHG abatement potential
Electrical power	kW _{elec.}	6	
Thermal power	kW _{thermal}	9	18 tCO _{2e} /a
HRT of the biogas digester	days	18	
Total digestor volume	m ³	23	

69

Ideas & Strategies: Waste-to-value potential

ITEM	UNIT	AMOUNT
Estimated investment	TZS	53,904,000
Total cost saving potential	TZS/a	19,239,205
Maintenance (5% CAPEX)	TZS/a	2,695,200
Simple payback	years	4.5

Levelized cost of Electricity (CHP biogas) Levelized cost of Heat (CHP biogas)

374.6 TZS/kWh (higher than grid) 262 TZS/kWh_{Heat} (same as LPG)

Fertilizer production potential of the digestate

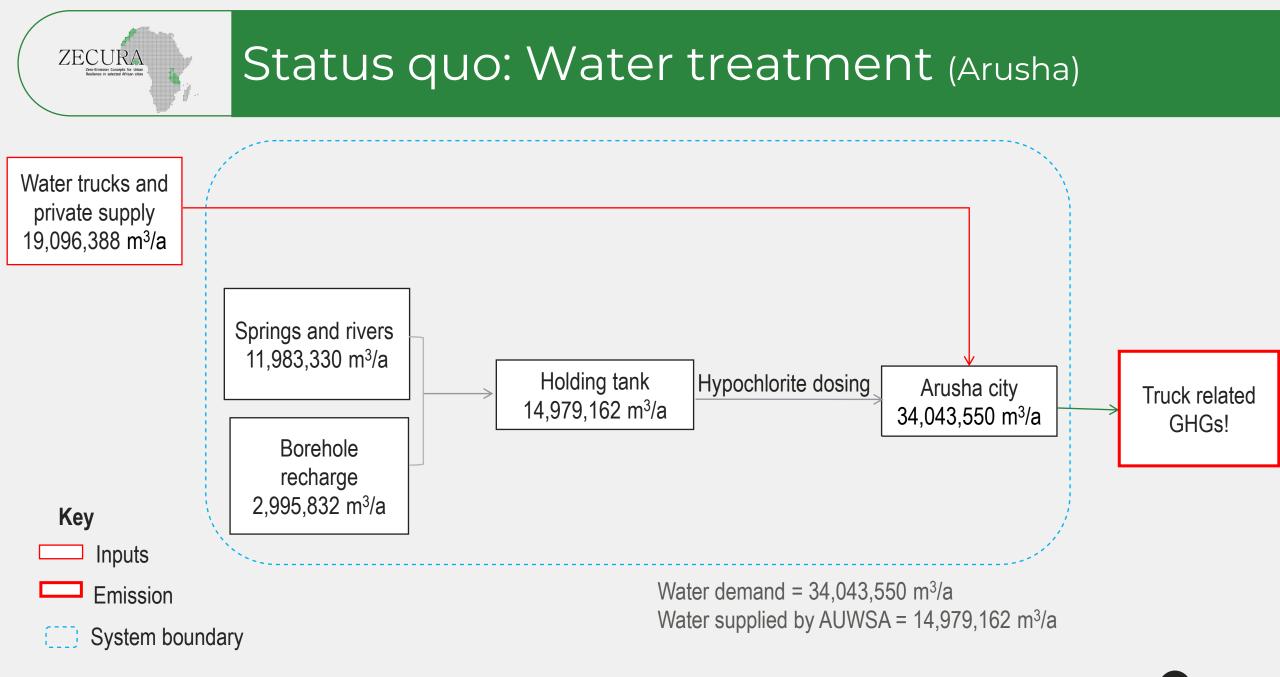
ITEM	UNIT	AMOUNT
Digestate output (4-5% TS)	m ³ /a	1,744
Liquid fertilizer output (70% (TS - 2%)	m³/a	1,221
Dried fertilizer output (3% (TS -85%)	t/a	52
Discharge liquid (7%, TS<0.1%)	m³/a	122
Recirculated Liquid (20% TS-2%)	m³/a	349
TS = total solids		

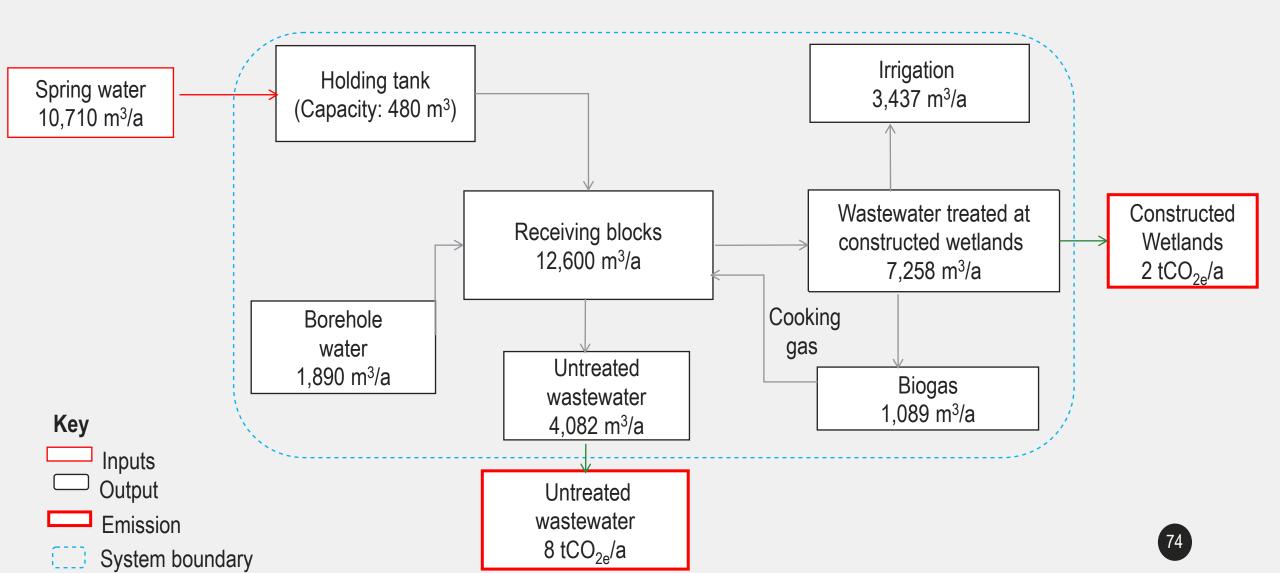
Ideas & Strategies: Waste-to-value potential

Biowaste is a resource!

From waste to resource management

No disposal in the future





Fresh Water

Status quo: Fresh water (NM-AIST)

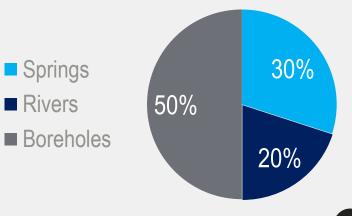
Status quo: Fresh water (NM-AIST)

ITEM	UNIT	AMOUNT
Fresh water consumption	m ³ /day	42
Total population in the campus		600
Water consumption rate	L/ca/day	70
Energy coumsumption (0.2 kWh/m ³)*	kWh/a	2,520
Total water costs	TZS/a	16,380,000
GHG emissions (energy related)	tCO _{2e} /a	0.85
*Regional value, computed		

(300 days/a are considered as full operating days)

SOURCE: Google images (2022)

Status quo: Fresh water (Arusha)


ITEM	UNIT	AMOUNT
Population		616,616
Supply from the municipality (AWUSA)	m³/day	41,039
Supplied by private distributors	m³/day	52,231
Fresh water consumption	m³/day	93,270
Water consumption rate	L/ca/day	151
Estimated energy use (energy related)	kWh/a	6,808,710
GHG emissions (energy related)	tCO _{2e} /a	2,288

25 L/ca/day

if water is drawn from a public kiosk in rural and urban

In urban areas, 70 L/ca/day if there is a water connection in the backyard

120 – 150 l/ca/day if there is supply into the house

SOURCE: Images - Google maps, AWUSA, Water resource group, TANZANIA: hydro-economic overview-an initial analysis

Ideas & Strategies: Water efficient faucets

Simulation for administration building

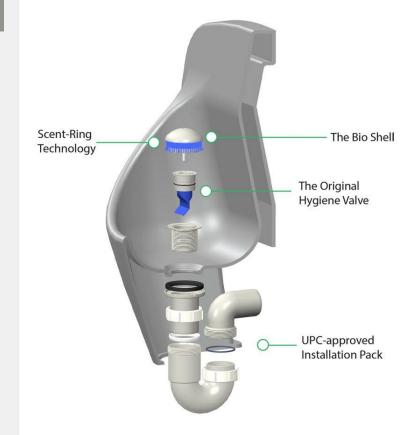
ITEM	UNIT	OLD	NEW
Water output	L/min	6	2
Unit		120	120
Usage per day	min	20	20
Water demand annual	m³/a	5,256	1,752
Water savings annual	m³/a		3,504
Saving potential	%		67
Estimated CAPEX	TZS		14,070,000
Monetary savings	TZS/a		4,555,200
Payback	years		3.1

SOURCE: https://www.enware.com.au/products/general-commercial-tapware/enware-delabie-tempostop-time-flow-basin-pillar-tap-push-button/ (2022).

Ideas & Strategies: Water efficient cisterns

Simulation for administration building

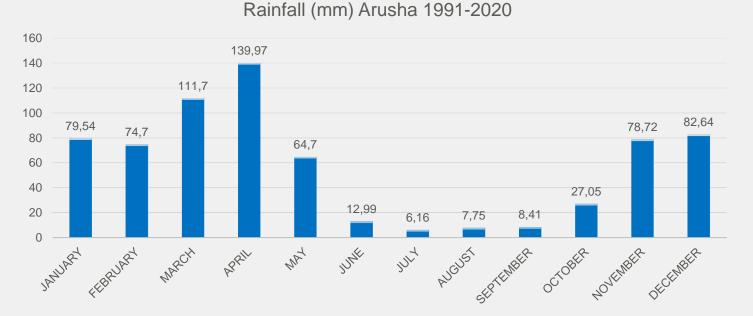
	•		
ITEM	UNIT	OLD	NEW
Water amount single use	L	10	4
Units	Х	80	80
Usage per day	users/day	5	5
Water demand annual	m³/a	1,460	584
Water savings annual	m³/a		876
Saving potential	%		60
Estimated CAPEX	TZS		5,266,000
Monetary Savings	TZS/a		1,138,800
Payback	years		5.1


SOURCE: https://jlplumbing.com/product/ce-watermark-toilet-water-tank-pneumatic-concealed-cistern/ (2022), https://toilet-guru.com/pressure.html (2022).

Ideas & Strategies: Waterless urinals

Simulation for administration building

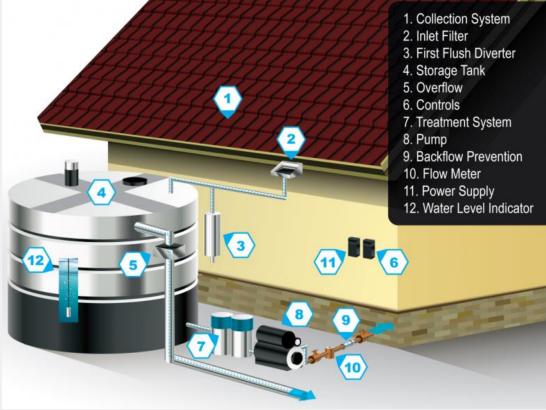
	•			
ITEM	UNIT	OLD	NEW	
Water output	L/flush	4	0	
Units	Х	60	60	
Usage per day	Х	10	10	Scent-Rin Technolog
Water demand annual	m³/a	876	0	
Water savings annual	m³/a		876	
Saving potential	%		100	
Odor trap cost	TZS/a		43,926	
Monetary Savings	TZS/a		1,138,800	
Estimated CAPEX	TZS		11,256,000	
Payback	years		9.9	

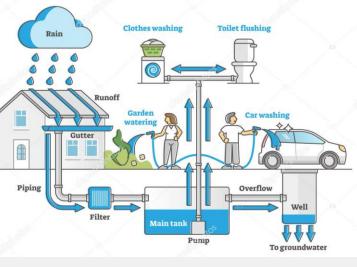

80

Rain Water

Ideas & Strategy: Rain water harvesting

ITEM	UNIT	AMOUNT
Catchment/roof area	m ²	12,100
Selected roof area (50%)	m ²	6,050
Annual rainfall	mm	1,282
Annual available water	m³/a	5,817


er uterse en uterse de la constitución de la consti

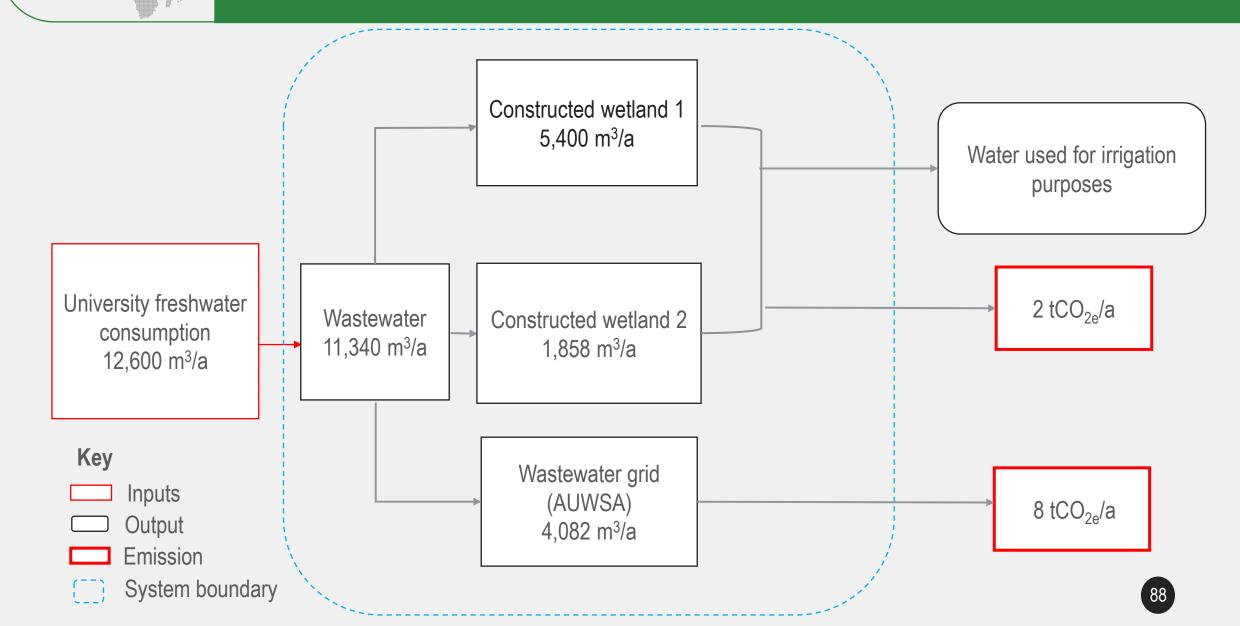


SOURCE: data information https://climateknowledgeportal.worldbank.org

Ideas & Strategy: Rain water harvesting

Reservoir for 1,940 m³ of rainwater (Approx. 4 months of rainwater)

ITEM	UNIT	AMOUNT
Total construction cost	TZS	54,292,700
Operating cost	TZS/a	1,085,854
Monetary saving	TZS/a	7,562,198
Payback period	years	11.6
Levelized cost of service unit (LCoS)	TZS/m ³	1,307


SOURCE: https://www.energy.gov/eere/femp/water-efficient-technology-opportunity-rainwater-harvesting-systems (2022).

Wastewater

Status quo: Wastewater (NM-AIST)

ZECURA Zero-Emission Concepts for Urban Resilience in selected African cities

Status quo: Wastewater (Arusha)

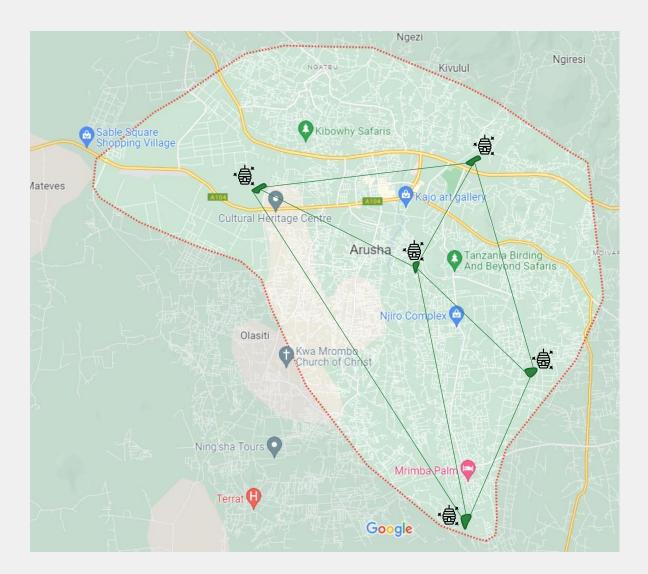
ITEM	UNIT	AMOUNT
Total water consumption	m ³ /a	34,043,550
Wastewater generation	m ³ /a	30,639,195
Treated wastewater	m ³ /a	3,650,000
GHG emissions for treated wastewater	tCO _{2e} /a	6,796
GHG emissions of total wastewater (lagoon)	tCO _{2e} /a	18,368

Reed Bed Filter

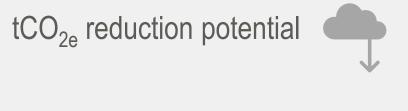
Ideas & Strategy: RBF expansion (NM-AIST)

ITEM	UNIT	AMOUNT
Volume	m ³ /a	4,082
Area requirement	m ²	91
GHG abatement potential	tCO _{2e} /a	7

SOURCE: https://earth.google.com/



Ideas & Strategy: RBF (Arusha)


ITEM	UNIT	AMOUNT
Number of people	Х	616,616
Estimated occupancy days	days/a	365
Water consumption	m³/a	34,043,550
Wastewater (untreated)	m³/a	30,639,95
Inflow area ratio	L/m².d	200
Area demand	ha	41.9
COD removal efficiency	%	53%
Weighted average water price	TZS/m ³	1,300
Daily wastewater generation per capita	L/d	120
Annual wastewater generation per capita	m³/a	43.8

RBF system of Arusha city

 $6,796 \text{ tCO}_{2e} \rightarrow 1,265 \text{ tCO}_{2e}$

94

SOURCE: https://www.google.com/maps/place/Arusha/@-3.3777155,36.65386,12.49z/data=!4m5!3m4!1s0x18371c88f2387383:0xbc1907f7ec497152!8m2!3d-3.3869254!4d36.6829927

RBF – Cropping options

	7 ha Reed Bed Filter		
	Input volume (m³/a)	Output volume (m³/a)	
Total	5,110,000	4,599,000	

SOURCE: Google Images

Crop selection for treated sewage effluent

ITEM	UNIT	BANANA	GUAVA	MAIZE
Spacing	meter	2.4 x 2.4	3 x 3	0.75 x 0.75
Crop water requirement	mm/month	240	16	150
Yield	kg/plant/a	40	35	0.4

Exemplary RBF system

Potential benefits from banana crops

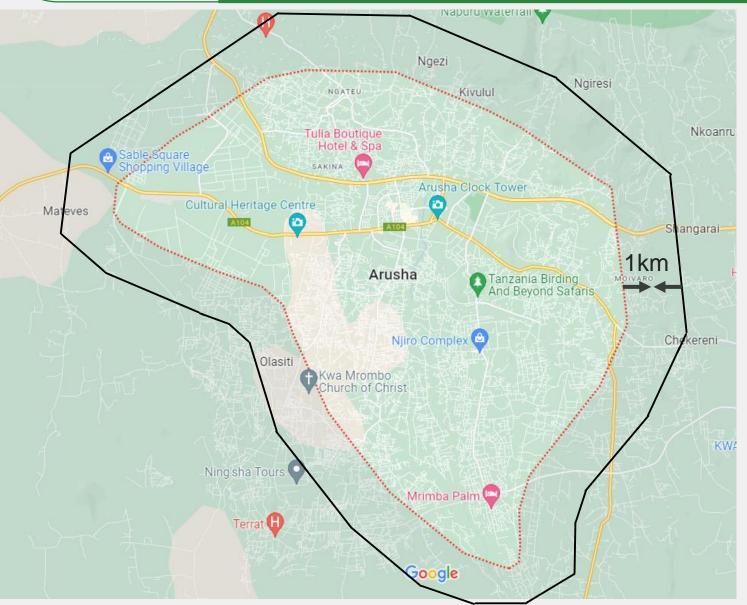
ITEM	UNIT	AMOUNT
Spacing per banana plant	m ²	6
Available area	ha	7
Number of plants		12,153
Yield	kg/plant/a	40
Potential of banana crop produced annually	kg	486,111
Market value	TZS/kg	2,100
Potential income generated	TZS	1,020,833,333
Post harvest losses	%	20%
Estimated income generated	TZS	816,666,667

Water used:2,917Water available:380,33

2,917 m³/month 380,333 m³/month

Exemplery RBF system

Potential income from 7 ha, depending on the kind of crop

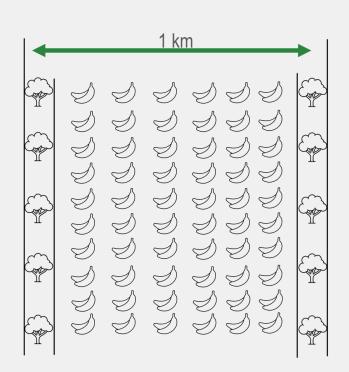


97

SOURCE: https://earth.google.com/web/search/Cultural+Heritage+Centre,+Dodoma+St,+Arusha/@-3.37414017,36.65032973,1377.26651405a,968.96531473d,35y,0.00860025h,0t,0r/data=CigiJgokCXMgsmHvvwrAEauyjMj7BQvAGZDoH0ZtWEJAIUYveJmpUUJA, Google Images (2022).

Arusha's green belt

1 km 9999 Corp Carlo)--ST - \checkmark -SP . Z)) \mathcal{I} Ŷ


SOURCE: https://www.google.com/maps/place/Arusha/@-3.3979698,36.6070005,12z/data=!3m1!4b1!4m5!3m4!1s0x18371c88f23 87383:0xbc1907f7ec497152!8m2!3d-3.3869254!4d36.6829927

98

Arusha's green belt

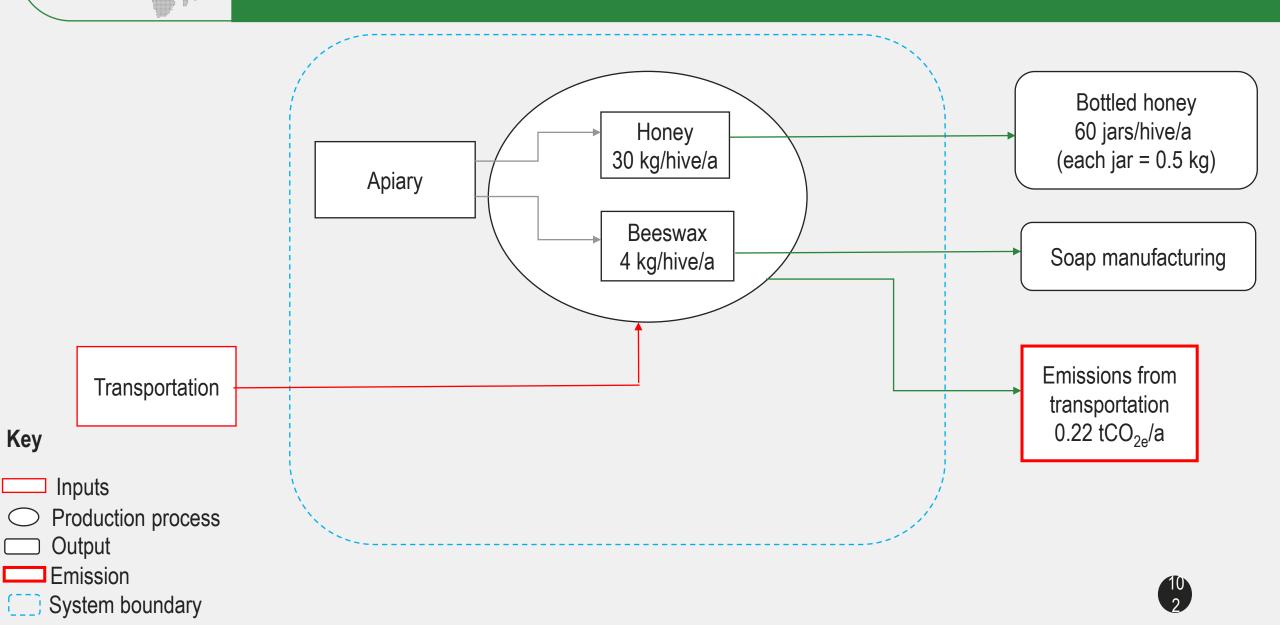
2 x 100 m of timber 45,000 km²

TEAK PLANTATION				
ITEM	UNIT	AMOUNT		
Spacing	m ²	9		
Available area	km ²	9,000		
Potential trees planted	Х	1 Billion		
Market price	TZS/m ³	72,202		
Annual water requirement	mm/tree	1,600		
Carbon stored in standing tree (26y)	kgC/tree	60		
Potential carbon stored at 26y	tC	60,415,809		
Potential income from carbon offsetting by 2050	TZS	6,6 Trillion		
	USD	3,020,790,464		

Arusha's green belt

\checkmark 800 m of banana plants

45,000 km ²			
	BANANA PLANTATION		
	ITEM	UNIT	AMOUNT
	Spacing	m ²	6
	Available area	km ²	36,000
	Qty. banana plants (potential)		6.3 Billion
	Yield per plant	kg/a	40
	Potential income generated	TZS	525 Trillion
	Potential jobs created		6,300,000
	Labour costs	TZS	1.9 Trillion
	Gross Margin (only including labour cost)	TZS	523 Trillion
		USD	237,777,273



Honey Production

Honey production

ZECURA Zero-Emission Concepts for Urban Resilience in selected African others

Honey production

ITEM	UNIT	AMOUNT
Vegetative area	ha	27
Hive density	hives/ha	15
Price of honey	TZS/kg	15,000.00
Price of beeswax	TZS/kg	9,600.00
Honey produced	kg/hive/a	30
Beeswax produced	kg/hive/a	4

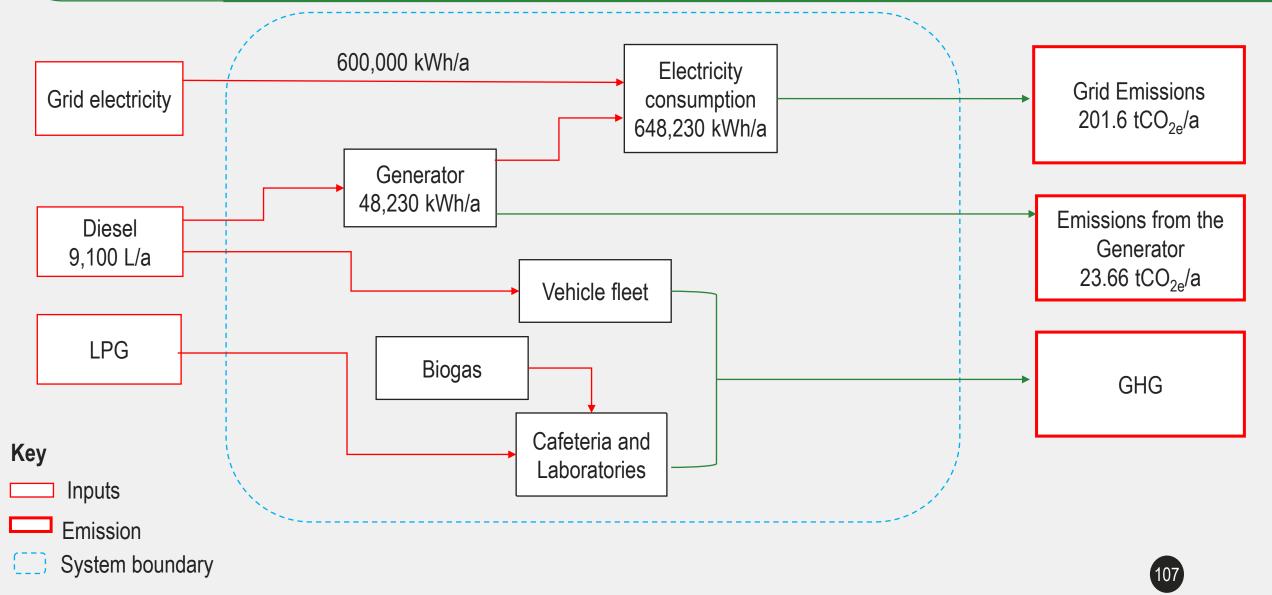
SOURCE: https://swahilihoney.co.tz/,https://doi.org/10.1007/s10457-019-00478-1, Google Images (2022).

Honey production

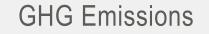
ITEM	UNIT	AMOUNT
Area Available	ha	27
Cost of hive installation	TZS	930,320
Transportation emissions	tCO _{2e} /a	0.22
Labour	persons/a	1-5
Payback period	years	6.5

SOURCE: https://www.ilo.org/global/docs

Revenue projections for honey production



Energy System


Status quo: Energy NM-AIST

Status quo: NM-AIST energy

ITEM	UNIT	AMOUNT	250
Electricity consumption from the grid	kWh/a	600,000	200
Fuel input	L/a	9,100	وم 20 100 لوم
Energy from generators	kWh/a	48,230	50
Total GHG emissions	tCO _{2e} /a	225.26	0

201,6

 Image: 100
 Image: 100

 50
 23,66

 0
 Image: Grid

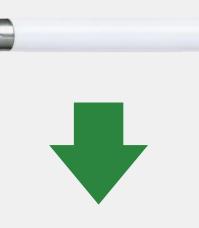
 Grid
 Generator

 Total energy supply
 kWh/a
 648,230

 Electricity costs
 TZS/a
 222,195,256

 Total emissions
 tCO_{2e}/a
 225.26

Lighting



Ideas & Strategy: Light replacement analysis

Example for replacing T8 FTL in Administration building

ITEM	UNIT	CURRENT (T8-36W)	LED (17W)
Number of light points (T8-36W)		428	428
Wattage of the light	W	36	17
Total energy consumption (Incl. ballast)	kWh/a	28,954	12,005
Energy savings	kWh/a		16,949
CO _{2e} savings	tCO _{2e} /a		6
Energy costs	TZS/a	9,265,344	3,841,728
Annual energy cost savings	TZS/a		5,423,616
Estimated investment cost	TZS		26,172,200
Simple payback	а		4.8

Estimated Average operating hours – **5.5** h/day

SOURCE: https://lanzmanufaktur.net/, https://www.energy.gov/energysaver/led-lighting (2022), https://www.lighting.philips.co.uk/consumer/ultra-efficient (2022)

Ideas & Strategy: Light replacement analysis

ITEM	UNIT	FTL	LED - Low Tech	LED - High Tech
Approximate cost per bulb	TZS	19,568	36,690	61,150
Average lifespan	h	5,000	20,000	50,000
Watts used	W	36	18	17
No. of bulbs needed for 50,000 hours of use	Х	10	3	1
Average Operating hours	h/day	5	5	5
Operating hours of the year	h/a	1,225	1,225	1,225
Total purchase price of bulbs over 50000 hrs	TZS	360,000	216,000	144,000
Total cost of electricity used (50,000 hours at 320 TZS/kWh)	TZS	576,000	288,000	272,000
Total cost over 50,000 hours	TZS	936,000	504,000	416,000
GHG Emissions	tCO _{2e} /a	15	7.4	7.0
Cost per operational year	TZS/a	22,932	12,348	10,192

SOURCE: https://lanzmanufaktur.net/, https://www.energy.gov/energysaver/led-lighting (2022), https://www.lighting.philips.co.uk/consumer/ultra-efficient (2022)

Pump System

Ideas & Strategy: Pump replacement

ITEM	UNIT	AMOUNT
Operating hours	h/a	3,650
Total dynamic head	m	20
Flow rate	m ³ /s	0.003
Nominal installed capacity	kW	4
Calculated efficiency rate (η)	%	19%
Energy consumption	kWh/a	8,687
Annual costs	TZS/a	2,779,840
New power absorption	kW	1
New efficiency rate (η)	%	66%

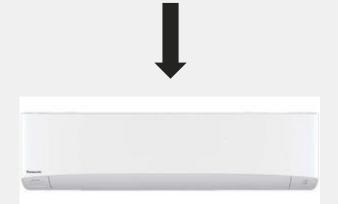
SOURCE: https://depositphotos.com

 $= \frac{Q\left(\frac{m^3}{s}\right) * H(m) * \left(\frac{kg}{m^3}\right) * 9.81(\frac{m}{s^{2)}}}{EC_p(w)}$ η =

ITEM	UNIT	AMOUNT
Equipment cost	TZS/a	6,421,909
Energy savings	kWh/a	6,520
Cost savings	TZS/a	2,291,427
CO _{2e} savings	t/a	1.8
Payback time	а	2.8

Ideas & Strategy: Pump replacement

Energy from photovoltaic


Automated pumps which are working when there is surplus of PV energy Ideal for irrigation purposes at the farmlands PV-powered water level metering device

Ideas & Strategy: Airconditioning

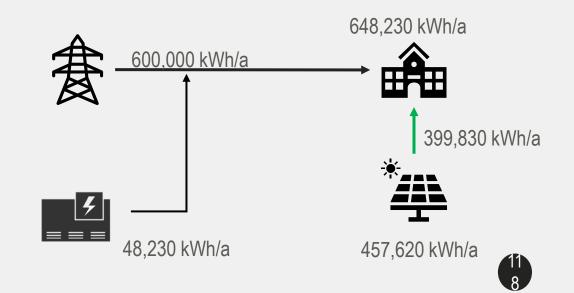
ITEM	UNIT	OLD	NEW
Model		Toshiba APO241H	Panasonic - CS- Z20VKEW
Nominal cool output	kW	8	9
Seasonal Energy Efficiency Ratio (Product dat	a)	4.29	8.5
Estimated operating time (Full load hours)	h/a	1,600	1,600
Power input - Electrical (Outdoor unit)	kW	1.9	1.06
Annual energy consumption (Cooling)	kWh/a/unit	12,800	14,400
Annual energy consumption (Electrical)	kWh/a/unit	2,984	1,600
Number of units		12	11
Total energy savings (Electricity)	kWh/a	35,804	17,067
GHG abatement potential	tCO _{2e} /a	12	6
Energy costs	TZS/a	11,457,343	5,461,333
Annual energy cost savings	TZS/a		5,996,009
Estimated investment cost	TZS		35,018,667
Simple payback	а		6

116

SOURCE: https://www.topten.eu/private/product/view/Panasonic-CU5Z90TBE-5-CSZ20VKEW, https://www.olimpiasplendid.com/seer-scop

ZECURA

Photovoltaic

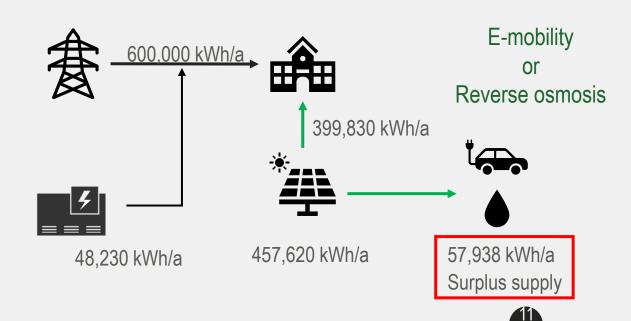


Ideas & Strategy: Photovoltaic system for NM-AIST

Estimated electricity consumption (total)	600,000	kWh/a
Reported kVA (bill 04/03/2019)	248	kVA
Simulated peak load	226	kW
Required rooftop space (admin)	1,008	m ²

ITEMUNITAMOUNTSimulated installed capacitykWp235GenerationkWh/a457,620Specific annual yieldkWh/kWp1,947Solar fraction%58.6%

SOURCE: Simulated using PVSoL.



Ideas & Strategy: Photovoltaic system for NM-AIST

ADMINISTRATION BUILDING				
ITEM	UNIT	VALUE		
Consumption by grid (Estimated)	kWh/a	600,000		
Installed capacity	kWp	235		
Specific annual yield	kWh/kWp	1,947		
Annual generation	kWh/a	457,620		
Self consumption	%	76.8%		
Solar fraction (annual)	%	58.6%		
LCoE	TZS/kWh	101		
LCoE (with loan)	TZS/kWh	138		
GHG savings (Grid)	tCO _{2e} /a	118		

Unitary turnkey price – 1,000 USD/kWp (3,473,000 TZS/kWp) Current electricity price - 320 TZS/kWh

Energy supplied by generators	kWh/a	48,230
Total electricity supply covered by PV	KWh/a	399,830
Total GHG emission abatement	tCO _{2e} /a	158
Total cost savings	TZS/a	142,707,256
Available excess generation	kWh/a	57,938

Ideas & Strategy: Photovoltaic for green mobility

648,230 kWh/a 399,830 kWh/a	PV carports/Charging stations	۵ (۱
457,620 kWh/a	57,938 kWh/a (Charging/discha and cable losses	
ITEM		

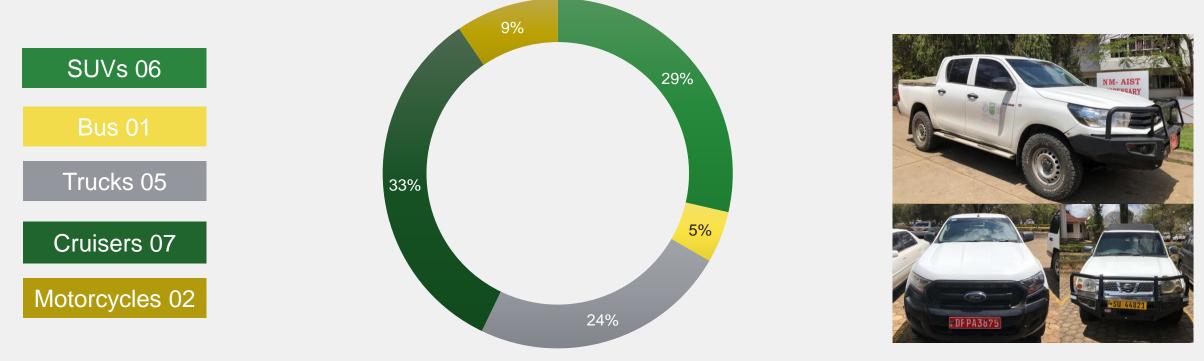
Average energy consumption of electric vehicles: 0.4 – 0.6 kWh/km (Including all the losses in the vehicle battery and performance)

92,700 km/a equivalent

9,270 liters of diesel equivalent (average 10 km/l of diesel)

Cost savings: 30.75 mil TZS/a Emission savings in mobility: 24

tCO_{2e}/a


ITEM	UNIT	AMOUNT
Total installed capacity	kWp	235
Specific annual yield	kWh/kWp	1,947
Estimated investment (PV & charging station)	TZS	725,290,381
LCoE	TZS/kWh	101.0
LCoE (With 9% loan)	TZS/kWh	138.0
Total GHG savings (electricity, generators and mobility)	tCO _{2e} /a	182
Payback period	Years	7

Mobility

Status quo: Mobility

SUVs Buses Trucks Cruisers Motorcycles

(122)

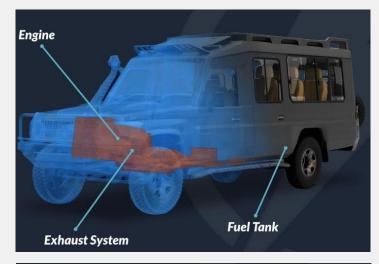
Ideas & Strategies: Life cycle cost analysis

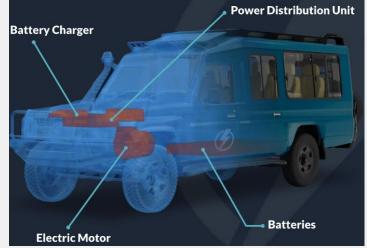
ITEM	UNIT	PETROL MOTORCYCLE	E-MOTORCYCLE
CAPEX	TZS	3,282,758	5,019,796
Fuel consumption/100km	l or <i>kWh</i>	3	3
Annual mileage	km/a	25,000	25,000
Fuel costs	TZS/I or TZS/kWh	3,359	138
Total Fuel costs per year	TZS/a	2,519,250	103,500
Maintenance costs	TZS/a	328,276	250,990
GHG emissions	tCO _{2e} /a	1.7	0
Life cycle costs (10 Years)	TZS	3,175,802	856,469

SOURCE: https://a2ei.org/resources/uploads/2021/10/A2EI_Greenfooot_E-Mobility-Adoption-in-Tanzania_Business-and-technical-insights-on-productive-use-cases.pdf

Ideas & Strategies: Life cycle cost analysis

ITEM	UNIT	CURRENT VEHICLE	E-VEHICLE
Model		TOYOTA HILUX	FORD F-150 LIGHTNING
CapEx	TZS	83,581,802	93,675,715
Fuel consumption/100km	l or <i>kWh</i>	9	26
Annual mileage	km/a	50,000	50,000
Fuel costs	TZS/I or TZS/kWh	3,318	138
Total Fuel costs per year	TZS/a	14,102,180	1,794,000
Maintenance costs	TZS/a	4,179,090	2,810,271
GHG emissions	tCO _{2e} /a	6	0
Life cycle costs	TZS	10,186,307	9,827,999



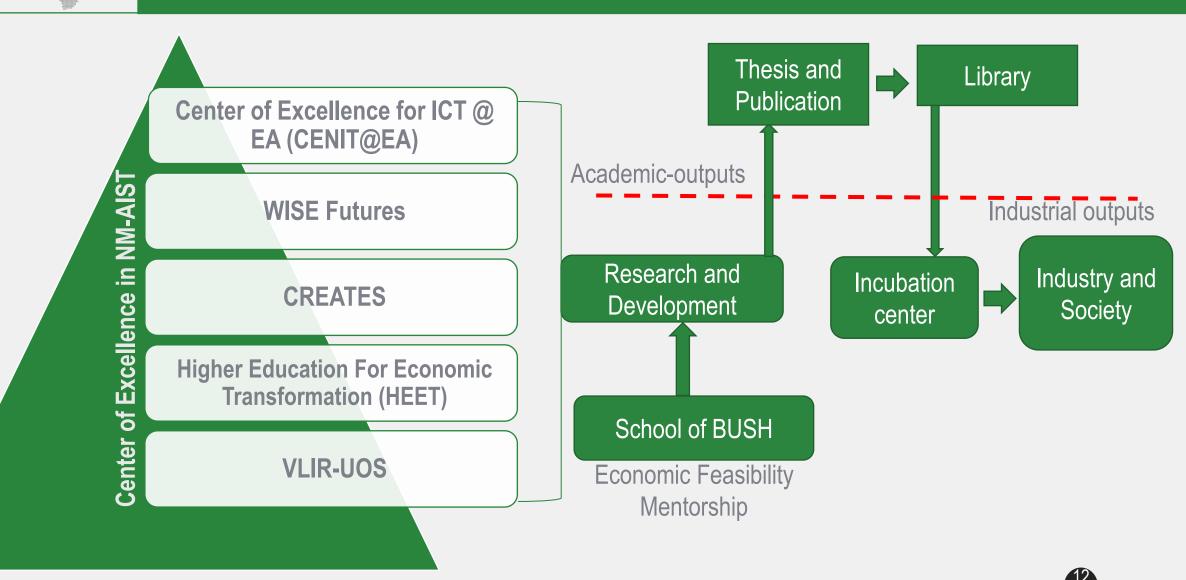


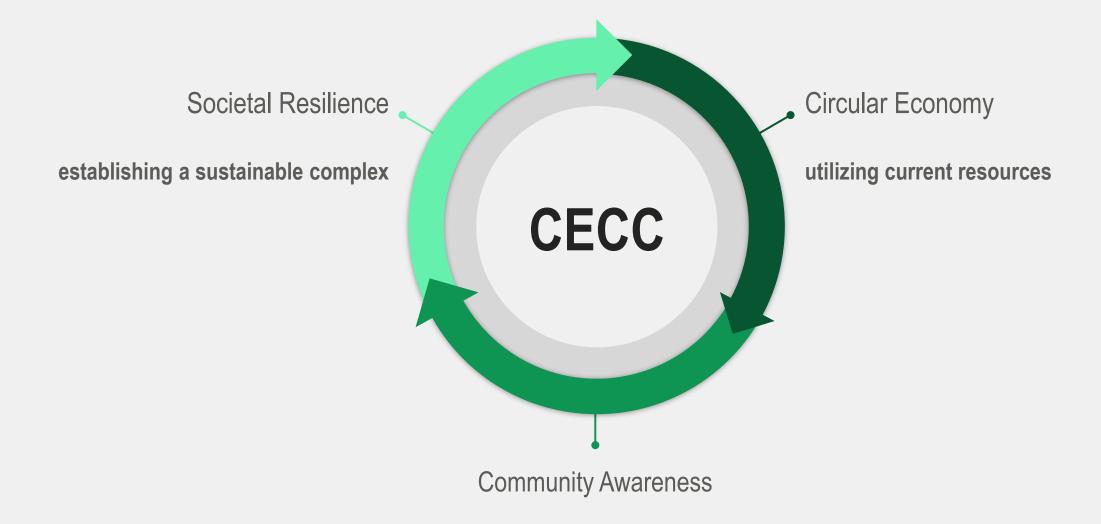
Ideas & Strategies (Alternative solution)

Switching a fuel car system to an electric car system.

Removing the existing fuel car system and replacing it with a complete electrical system i.e. an electric motors, battery system, onboard charger, information display.

Future: Reaching net zero

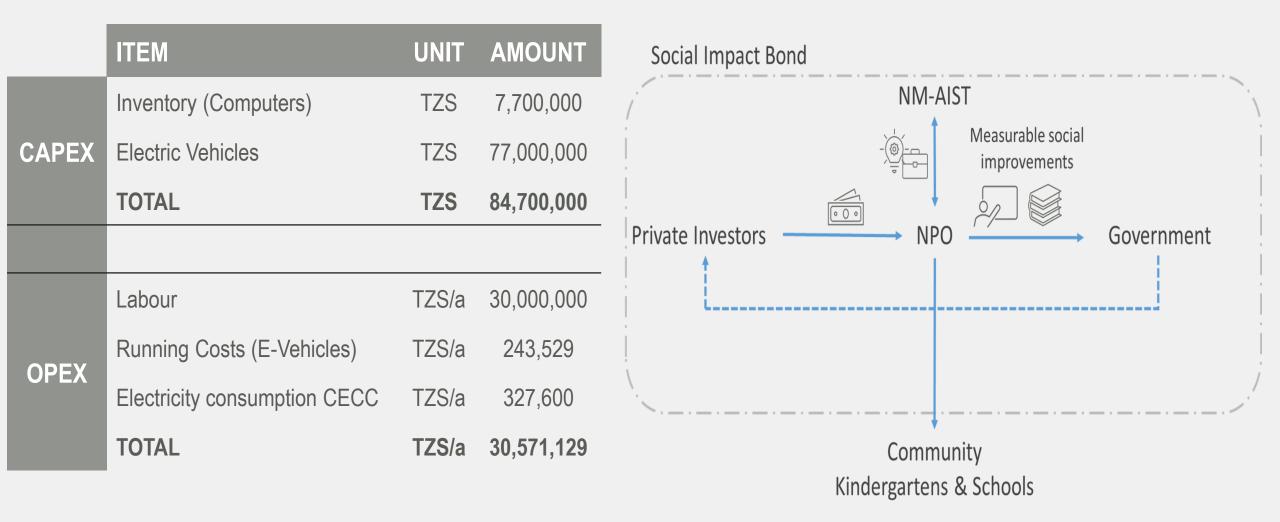



CECC

Status quo: Centers at NM-AIST

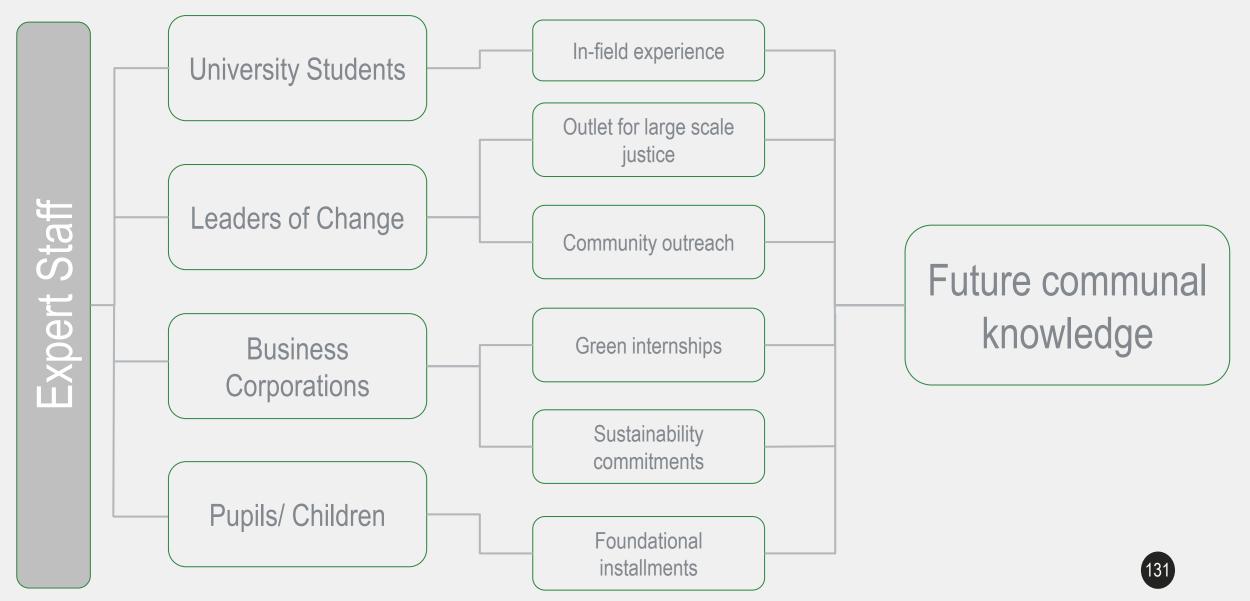
ZECURA Zero-Emission Concepts for Ulban Resilence in selected African clies

Circular Economy Competence Center



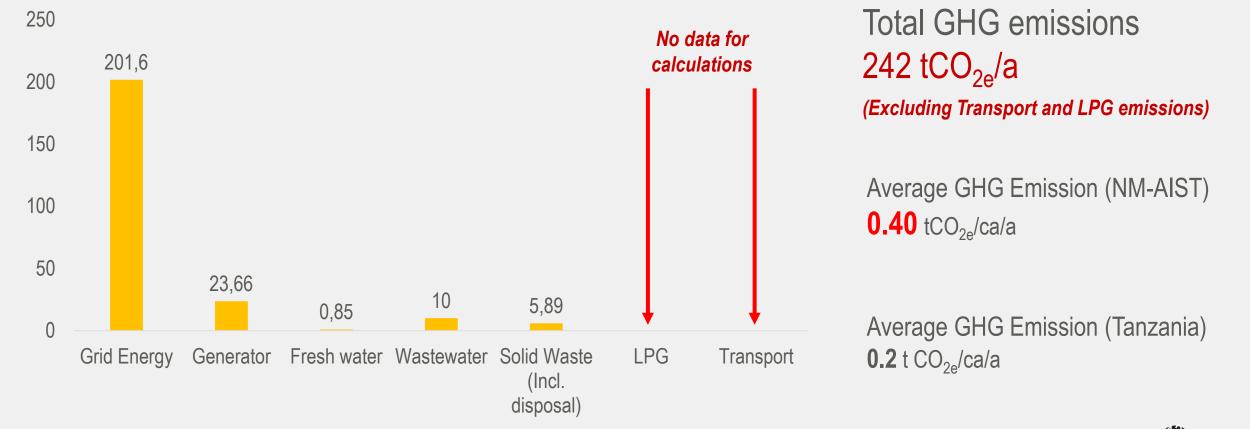
ZECURA Zero-Emission Concepts for Urban Resilience in solected African cities

developing a bottom up system


Base financing CECC

13

Branches of Impact



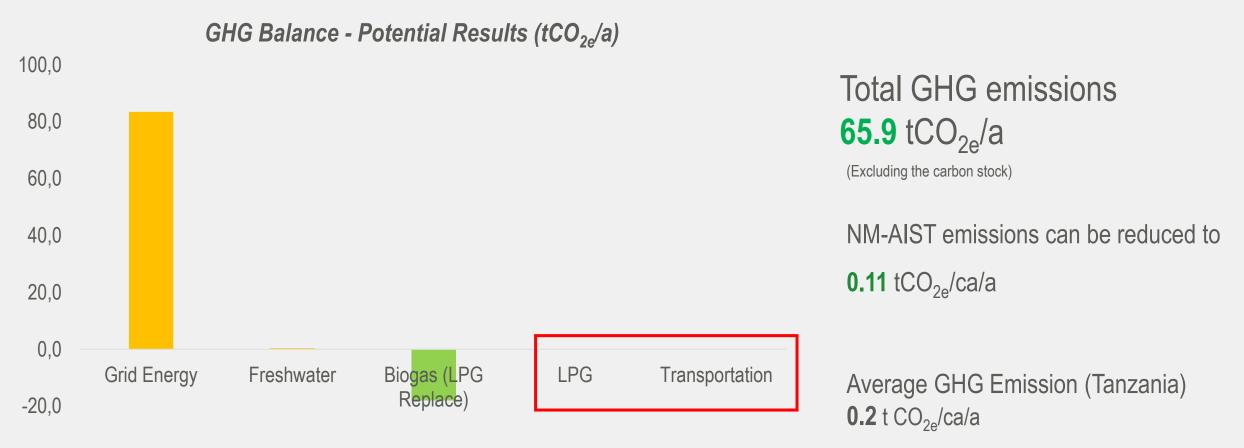
Conclusion

Status quo - GHG balance of NM-AIST

3

Total investments & savings

	ITEM	UNIT	AMOUNT	PAYBACK (YEARS)
	Waste Resource Center			
	Total Potential Income - Plastic, Metal, etc.	TZS/a	20,160,000	
MSW	Total Cost	TZS	16,500,000	1
1412.44	Biogas Digester			
	Monetary Savings	TZS/a	19,239,205	
	Estimated CAPEX	TZS	56,599,200.00	3
	Faucets			
	Monetary Savings	TZS/a	4,555,200	
	Estimated CAPEX	TZS	14,070,000.00	3
	Efficient Cisterns			
	Monetary Savings	TZS/a	1,138,800	
Fresh Water	Estimated CAPEX	TZS	5,266,000	5
FIESH Water	Waterless Urinals			
	Monetary saving	TZS/a	1,138,800	
	Estimated CAPEX & OPEX	TZS	11,256,000	10
	Rain Water Harvesting			
	Monetary saving	TZS/a	7,562,198	
	Estimated CAPEX	TZS	54,292,700	7


Total investments & savings (cont.)

	ITEM	UNIT	AMOUNT	PAYBACK (YEARS)
	Reed Bed Filter			
	Total Savings in Water	TZS/a	5,306,600	
Montowator	Estimated investment cost	TZS	81,972,800	15
Wastewater	Honey Production			
	Monetary Savings	TZS/a	143,369	6
	Estimated CAPEX	TZS	930,320	
	Lighting			
	Monetary Savings	TZS/a	5,423,616	5
	Estimated Investment	TZS	26,172,200	
	Pump System			
	Monetary Savings	TZS/a	2,291,427	3
	Estimated CAPEX	TZS	6,421,909	
	Air-conditioning		, ,	
Energy	Monetary Savings	TZS/a	5,996,009	6
Litergy	Estimated CAPEX	TZS	35,018,667	
	PV System			
	Monetary Savings	TZS/a	103,612,912	7
	Estimated CAPEX	TZS	725,290,381	
	E-Motorbike			
	Monetary Savings	TZS/a	2,248,620	2
	Estimated CAPEX	TZS	5,019,796	
	E-Truck			
	Monetary Savings	TZS/a	4,971,090	22 13
	Estimated CAPEX	TZS	109,510,000	5

ITEM	UNIT	AMOUNT	PAYBACK (YEARS)
TOTAL BENEFITS TOTAL INVESTMENTS	TZS/a TZS EUR	183,787,845 1,148,319,973 510,004	6

13 7

-40,0

Challenges & Opportunities: on the road to zero emissions

Challenges

- Organise the necessary
 investments
- Identify knowledge and technology gaps
- Asset management and maintenance
- Institutional capacity and policy framework(s)

Opportunities

- Empowerment: from donors to investors
- Participatory multistakeholder engagement
- Capitalise on carbon mitigation and sequestration potential
- Job and skills creation
- New (non) academic research & curriculum

...the complete picture

Asante!

zecura.info

Contact form

ZECURA	Home	About ZECURA	TU LIVE Updates	Approach	Project
Contact					
"*" indicates required fields					
Name *					
First		Last			
Email *					
Question *					

Submit